Machine learning predicts executive functions from verbal fluency data:
A study in healthy participants
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Subjects
e N=234
 Females: 60%
« Males: 40%
« Age: 20-55 (mean age: 35,2)
* Monolingual German

* No neurological / psychiatric
diseases

Background

« Verbal fluency (VF) tasks are well-established
parts of executive function (EF) tests commonly
used in neuropsychological assessment

Beside evaluation of the sum of words
produced in VF tasks, qualitative parameters
like semantic distances [1] and speech breaks
[2] were shown to be representative for

reflecting EFs Machine Learning Approach

« Data adjusted for sex and
age by linear regression

Relevance Vector Machine

» Bayesian sparse
technique

10-fold cross-validation
100 replication

Mean of correlation of true
and predicted EF scores

Commonly wused evaluation of semantic
distances rely on subjective and manual
assessments but computerized analyses were
shown to better address qualitative evaluation
of patient”s searching strategies [3]

— Aim
|dentify distinct VF search strategies to predict

EF performance by use of machine learning
methods

Methods

Testing material
Executive function battery

« 13 EF tests assessing cognitive flexibility, working
memory and inhibition

Semantic verbal fluency tests

« 2 minutes per test
Test1: Animals
Test2: Jobs
Test3: Switching: Sports / Fruits
« 39 Variables of interest measuring
e Correct number of words
Repetition & category errors
Speech break latencies
(semi-automated determined with PRAAT [4])
Sequential & cumulative semantic distances
(ontological approach of GermaNet [9])
Evaluation of VF switching task across both
categories and within each category

Results
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— Legend
Features from switching VF task

are most predictive to inhibition
performance

Test 1 = Animals EF-Performance

Test 2 = Jobs
Switching test = Sports / fruits

Quartile 2 — Bad
— Quartile 4 — Very good

— Quartile 1 — Very bad
Quartile 3 — Good

(1)

Semantic VF features could predict cognitive flexibility, working memory, inhibition performance applying machine learning methods
According to other studies [1] semantic relatedness is not per se an indicator for cognitive flexibility performance
-> Participants are not explicitly asked to produce category-switches - non-linear relationship of semantic distances and EF performance -
closely related words are easier to access
« Extending previous findings [6], especially switching VF task relies on inhibitory processes > suppressing words from second category in VF
switching task expresses high inhibitory demand
Additional semantic analyses e.g. based on Latent Semantic Analysis - improve prediction results
Decoding VF search strategies - better understanding of EF — VF relationship = VF tasks could substitute EF tests
- less time-consuming, closely related to everyday life performance
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