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Machine learning predicts executive functions from verbal fluency data:
A study in healthy participants

MethodsIntroduction

Background
• Verbal fluency (VF) tasks are well-established

parts of executive function (EF) tests commonly
used in neuropsychological assessment

• Beside evaluation of the sum of words
produced in VF tasks, qualitative parameters
like semantic distances [1] and speech breaks
[2] were shown to be representative for
reflecting EFs

• Commonly used evaluation of semantic
distances rely on subjective and manual
assessments but computerized analyses were
shown to better address qualitative evaluation
of patient´s searching strategies [3]

Subjects
• n = 234 

• Females: 60%
• Males: 40%

• Age: 20-55 (mean age: 35,2)
• Monolingual German
• No neurological / psychiatric 

diseases

Results

Discussion

Semantic verbal fluency tests
• 2 minutes per test

Test1: Animals
Test2: Jobs
Test3: Switching: Sports / Fruits

• 39 Variables of interest measuring
• Correct number of words
• Repetition & category errors
• Speech break latencies 

(semi-automated determined with PRAAT [4])
• Sequential & cumulative semantic distances

(ontological approach of GermaNet [5])
• Evaluation of VF switching task across both 

categories and within each category

• Semantic VF features could predict cognitive flexibility, working memory, inhibition performance applying machine learning methods
• According to other studies [1] semantic relatedness is not per se an indicator for cognitive flexibility performance

à Participants are not explicitly asked to produce category-switches à non-linear relationship of semantic distances and EF performance à
closely related words are easier to access

• Extending previous findings [6], especially switching VF task relies on inhibitory processes à suppressing words from second category in VF
switching task expresses high inhibitory demand

• Additional semantic analyses e.g. based on Latent Semantic Analysis à improve prediction results
• Decoding VF search strategies à better understanding of EF – VF relationship à VF tasks could substitute EF tests

à less time-consuming, closely related to everyday life performance
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Machine Learning Approach
• Data adjusted for sex and 

age by linear regression
• Relevance Vector Machine

• Bayesian sparse 
technique

• 10-fold cross-validation
• 100 replication
• Mean of correlation of true 

and predicted EF scores

Executive function battery 

• 13 EF tests assessing cognitive flexibility, working 
memory and inhibition 

Testing material
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EF-PerformanceTest 1 = Animals

Test 2 = Jobs

Switching test = Sports / fruits

Features from switching VF task 
are most predictive to inhibition 
performance

• Tend to search in far distanced word 
categories

• Produce less errors
• Have shorter speech breaks

• Tend to search in closely 
related word categories

• Produce less errors
• Have shorter speech breaks

• Tend to search in far distanced related 
word categories

• Produce less errors
• Have shorter speech breaks

Legend
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r = 0.13
Correlation coefficient of 

true and predicted EF 
scores 

(p = 0.005)

r = 0.42 
Correlation coefficient  of 

true and predicted EF 
scores

(p < 0.0001)

r = 0.23 
Correlation coefficient of 

true and predicted EF 
scores

(p < 0.0001)

Aim
Identify distinct VF search strategies to predict 
EF performance by use of machine learning 
methods

Raven´s Standard Progressive Matrices Test N-back non-verbal Test Stop-Signal Test


