

61 - Language #2

Machine learning predicts executive functions from verbal fluency data: A study in healthy participants

Julia Amunts^{1,2}, Julia Camilleri^{1,2}, Stefan Heim³, Simon Eickhoff^{1,2} & Susanne Weis^{1,2}

¹Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany ²Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ³Institute of Neuroscience and Medicine (INM-1: Structural and functional organization of the brain), Research Centre Jülich, Jülich, Germany j.amunts@fz-juelich.de

Introduction

Background

- Verbal fluency (VF) tasks are well-established parts of executive function (EF) tests commonly used in neuropsychological assessment
- Beside evaluation of the sum of words produced in VF tasks, qualitative parameters like semantic distances [1] and speech breaks were shown to be representative for reflecting EFs
- Commonly used evaluation of semantic distances rely on subjective and manual assessments but computerized analyses were shown to better address qualitative evaluation of patient's searching strategies [3]

Aim

Cumulative

Switching test

semantic distance within 1st category

Cumulative

semantic

distance

Test 1

Latencies

4th quarter

Test 1

Identify distinct VF search strategies to predict EF performance by use of machine learning methods

Cognitive flexibility

Categorical errors

Latencies 3rd quarter

r = 0.42

Correlation coefficient of

true and predicted EF

(p < 0.0001)

Raven's Standard Progressive Matrices Test

Categorical

Total

Test 1

Latencies

1st quarter

Switching test

latencies

errors Test 2

Subjects

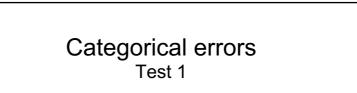
- n = 234
 - Females: 60%
 - Males: 40%
- Age: 20-55 (mean age: 35,2)
- Monolingual German
- No neurological / psychiatric diseases

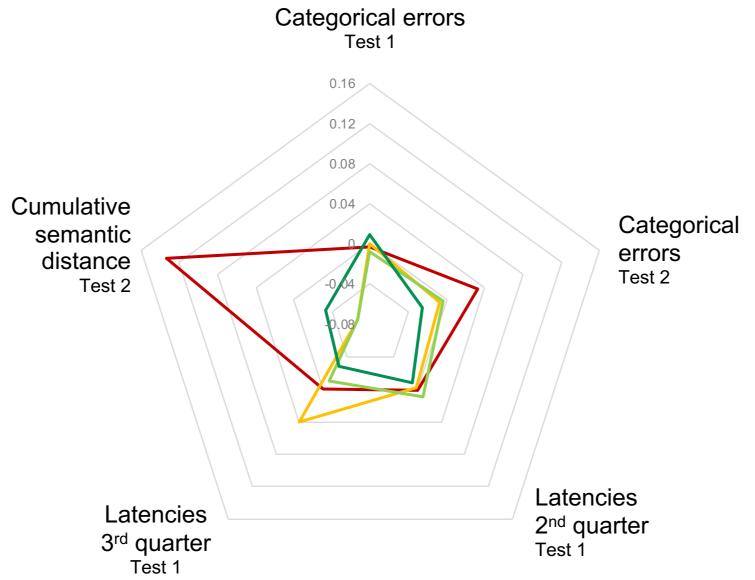
Machine Learning Approach

- Data adjusted for sex and age by linear regression
- Relevance Vector Machine
 - Bayesian sparse technique
- 10-fold cross-validation
- 100 replication
- Mean of correlation of true and predicted EF scores

Methods

Testing material Executive function battery


 13 EF tests assessing cognitive flexibility, working memory and inhibition


Semantic verbal fluency tests

- 2 minutes per test
 - Test1: Animals
 - Test2: Jobs
 - Test3: Switching: Sports / Fruits
- 39 Variables of interest measuring
 - Correct number of words
 - Repetition & category errors
 - Speech break latencies (semi-automated determined with PRAAT [4])
 - Sequential & cumulative semantic distances (ontological approach of GermaNet [5])
 - Evaluation of VF switching task across both categories and within each category

Results

Working memory N-back non-verbal Test

r = 0.13Correlation coefficient of true and predicted EF

(p = 0.005)

Inhibition

Stop-Signal Test

Latencies 3rd quarter Switching test

Cumulative semantic distance Switching test

Switching test

Latencies

difference

true and predicted EF (p < 0.0001)

r = 0.23

Correlation coefficient of

ligh performers characteristics High

- Tend to search in closely related word categories
- Produce less errors
- Have shorter speech breaks
- Tend to search in far distanced word categories
- Produce less errors
- Have shorter speech breaks
- Tend to search in far distanced related word categories
- Produce less errors
- Have shorter speech breaks

Legend **EF-Performance** Test 1 = Animals — Quartile 1 – Very bad — Quartile 2 – Bad Test 2 = Jobs — Quartile 4 – Very good — Quartile 3 – Good Switching test = Sports / fruits

Features from switching VF task are most predictive to inhibition performance

Discussion

- Semantic VF features could predict cognitive flexibility, working memory, inhibition performance applying machine learning methods
- According to other studies [1] semantic relatedness is not per se an indicator for cognitive flexibility performance
 - > Participants are not explicitly asked to produce category-switches > non-linear relationship of semantic distances and EF performance > closely related words are easier to access
- Extending previous findings [6], especially switching VF task relies on inhibitory processes > suppressing words from second category in VF switching task expresses high inhibitory demand
- Additional semantic analyses e.g. based on Latent Semantic Analysis > improve prediction results
- Decoding VF search strategies \rightarrow better understanding of EF VF relationship \rightarrow VF tasks could substitute EF tests
 - → less time-consuming, closely related to everyday life performance
- [1] Pakhomov et al. (2012). Neuropsychologia. 50:9. [2] Wolters et al. Interspeech. (2016). September 2016. [3] Pauselli et al. (2018). Psychiatry Research. 263(2018).

- [5] Heinrich V et al (2011). RANLP.
- [6] Unsworth et al. (2011). Q J EXP PSYCHOL. 64(3).