000887933 001__ 887933
000887933 005__ 20210130010710.0
000887933 0247_ $$2doi$$a10.1007/s11104-019-03959-5
000887933 0247_ $$2ISSN$$a0032-079X
000887933 0247_ $$2ISSN$$a1573-5036
000887933 0247_ $$2Handle$$a2128/26193
000887933 0247_ $$2WOS$$aWOS:000519658900006
000887933 037__ $$aFZJ-2020-04525
000887933 082__ $$a580
000887933 1001_ $$0P:(DE-HGF)0$$aPerelman, Adi$$b0
000887933 245__ $$aTracing root-felt sodium concentrations under different transpiration rates and salinity levels
000887933 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2020
000887933 3367_ $$2DRIVER$$aarticle
000887933 3367_ $$2DataCite$$aOutput Types/Journal article
000887933 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605622364_3599
000887933 3367_ $$2BibTeX$$aARTICLE
000887933 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887933 3367_ $$00$$2EndNote$$aJournal Article
000887933 520__ $$aAims(1) Monitoring ‘root-felt’ salinity by using rhizoslides as a non-invasive method, (2) Studying how transpiration rate, salinity in irrigation water, and root water uptake affect sodium distribution around single roots, (3) Interpreting experimental results by using simulations with a 3-D root system architecture model coupled with water flow and solute transport models.MethodsTomato plants were grown on rhizoslides under various salinity levels and two transpiration rates: high and low. Daily root images were processed with GIMP and incorporated into a 3-D numerical model. The experiments were simulated with R-SWMS, a 3-dimensional numerical model that simulates water flow and solute transport in soil, into the root and inside root systems.ResultsBoth experimental and simulation results displayed higher root-felt sodium concentrations compared with the bulk concentrations, and larger accumulation at higher transpiration rate. The simulations illustrated that the root-felt to bulk concentration ratio changed during the experiment depending both on the irrigation water salinity and transpiration rate.ConclusionsChanges in sodium concentrations with transpiration rates are most likely caused by root water uptake and ion exclusion. Simulation results indicate that root-scale process models are required to link root system architecture, environmental, and soil conditions with root-felt salinities.
000887933 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000887933 588__ $$aDataset connected to CrossRef
000887933 7001_ $$0P:(DE-Juel1)177809$$aJorda, Helena$$b1
000887933 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b2
000887933 7001_ $$00000-0002-3630-5696$$aLazarovitch, Naftali$$b3$$eCorresponding author
000887933 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-019-03959-5$$gVol. 447, no. 1-2, p. 55 - 71$$n1-2$$p55 - 71$$tPlant and soil$$v447$$x1573-5036$$y2020
000887933 8564_ $$uhttps://juser.fz-juelich.de/record/887933/files/Perelman2020_Article_TracingRoot-feltSodiumConcentr.pdf
000887933 8564_ $$uhttps://juser.fz-juelich.de/record/887933/files/POSTPRINT_Perelman2019_Article_TracingRoot-feltSodiumConcentr.pdf$$yPublished on 2019-02-01. Available in OpenAccess from 2020-02-01.
000887933 909CO $$ooai:juser.fz-juelich.de:887933$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000887933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177809$$aForschungszentrum Jülich$$b1$$kFZJ
000887933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b2$$kFZJ
000887933 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000887933 9141_ $$y2020
000887933 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000887933 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-09-05$$wger
000887933 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SOIL : 2018$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger
000887933 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000887933 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000887933 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000887933 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000887933 980__ $$ajournal
000887933 980__ $$aVDB
000887933 980__ $$aUNRESTRICTED
000887933 980__ $$aI:(DE-Juel1)IBG-3-20101118
000887933 9801_ $$aFullTexts