001     887933
005     20210130010710.0
024 7 _ |a 10.1007/s11104-019-03959-5
|2 doi
024 7 _ |a 0032-079X
|2 ISSN
024 7 _ |a 1573-5036
|2 ISSN
024 7 _ |a 2128/26193
|2 Handle
024 7 _ |a WOS:000519658900006
|2 WOS
037 _ _ |a FZJ-2020-04525
082 _ _ |a 580
100 1 _ |a Perelman, Adi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Tracing root-felt sodium concentrations under different transpiration rates and salinity levels
260 _ _ |a Dordrecht [u.a.]
|c 2020
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605622364_3599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aims(1) Monitoring ‘root-felt’ salinity by using rhizoslides as a non-invasive method, (2) Studying how transpiration rate, salinity in irrigation water, and root water uptake affect sodium distribution around single roots, (3) Interpreting experimental results by using simulations with a 3-D root system architecture model coupled with water flow and solute transport models.MethodsTomato plants were grown on rhizoslides under various salinity levels and two transpiration rates: high and low. Daily root images were processed with GIMP and incorporated into a 3-D numerical model. The experiments were simulated with R-SWMS, a 3-dimensional numerical model that simulates water flow and solute transport in soil, into the root and inside root systems.ResultsBoth experimental and simulation results displayed higher root-felt sodium concentrations compared with the bulk concentrations, and larger accumulation at higher transpiration rate. The simulations illustrated that the root-felt to bulk concentration ratio changed during the experiment depending both on the irrigation water salinity and transpiration rate.ConclusionsChanges in sodium concentrations with transpiration rates are most likely caused by root water uptake and ion exclusion. Simulation results indicate that root-scale process models are required to link root system architecture, environmental, and soil conditions with root-felt salinities.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jorda, Helena
|0 P:(DE-Juel1)177809
|b 1
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 2
700 1 _ |a Lazarovitch, Naftali
|0 0000-0002-3630-5696
|b 3
|e Corresponding author
773 _ _ |a 10.1007/s11104-019-03959-5
|g Vol. 447, no. 1-2, p. 55 - 71
|0 PERI:(DE-600)1478535-3
|n 1-2
|p 55 - 71
|t Plant and soil
|v 447
|y 2020
|x 1573-5036
856 4 _ |u https://juser.fz-juelich.de/record/887933/files/Perelman2020_Article_TracingRoot-feltSodiumConcentr.pdf
856 4 _ |y Published on 2019-02-01. Available in OpenAccess from 2020-02-01.
|u https://juser.fz-juelich.de/record/887933/files/POSTPRINT_Perelman2019_Article_TracingRoot-feltSodiumConcentr.pdf
909 C O |o oai:juser.fz-juelich.de:887933
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177809
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129548
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT SOIL : 2018
|d 2020-09-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21