000887940 001__ 887940
000887940 005__ 20220930130257.0
000887940 0247_ $$2doi$$a10.1002/celc.202001212
000887940 0247_ $$2Handle$$a2128/26262
000887940 0247_ $$2altmetric$$aaltmetric:94059747
000887940 0247_ $$2WOS$$aWOS:000593989300010
000887940 037__ $$aFZJ-2020-04532
000887940 082__ $$a540
000887940 1001_ $$0P:(DE-Juel1)172013$$aLenyk, Bohdan$$b0
000887940 245__ $$aDual‐Transducer Malaria Aptasensor Combining Electrochemical Impedance and Surface Plasmon Polariton Detection on Gold Nanohole Arrays
000887940 260__ $$aWeinheim$$bWiley-VCH$$c2020
000887940 3367_ $$2DRIVER$$aarticle
000887940 3367_ $$2DataCite$$aOutput Types/Journal article
000887940 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606144372_28754
000887940 3367_ $$2BibTeX$$aARTICLE
000887940 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887940 3367_ $$00$$2EndNote$$aJournal Article
000887940 520__ $$aTwo transducer principles are combined in one aptamer biosensor (aptasensor) by simultaneously performing electrochemical impedance spectroscopy (EIS) and surface plasmon polariton (SPP) detection of a malaria biomarker. A thin gold film perforated with nanohole arrays is modified with small and highly charged aptamer receptors and utilized for the detection of Plasmodium falciparum lactate dehydrogenase (PfLDH), the main biomarker of malaria. Monitoring the same analyte binding events by two independent transduction principles not only corroborates the in situ detection, but also covers a concentration range of six orders of magnitude (1 pM–1 μM). The EIS method is highly sensitive to low concentrations of PfLDH (1 pM–100 nM), whereas SPP is sensitive to higher concentrations of the target (10 nM–1 μM), owing to either high interfacial or more bulk sensitivity, respectively. Thus, we propose the dual‐transducer aptasensor based on gold nanohole arrays as a platform for a broad dynamic concentration range and reliable detection.
000887940 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000887940 588__ $$aDataset connected to CrossRef
000887940 7001_ $$0P:(DE-HGF)0$$aFigueroa‐Miranda, Gabriela$$b1
000887940 7001_ $$0P:(DE-Juel1)178892$$aPavlushko, Ivan$$b2
000887940 7001_ $$0P:(DE-HGF)0$$aLo, Young$$b3
000887940 7001_ $$0P:(DE-HGF)0$$aTanner, Julian A.$$b4
000887940 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5
000887940 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b6$$eCorresponding author
000887940 773__ $$0PERI:(DE-600)2724978-5$$a10.1002/celc.202001212$$gVol. 7, no. 22, p. 4594 - 4600$$n22$$p4594 - 4600$$tChemElectroChem$$v7$$x2196-0216$$y2020
000887940 8564_ $$uhttps://juser.fz-juelich.de/record/887940/files/celc.202001212.pdf$$yOpenAccess
000887940 8767_ $$d2020-11-17$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000887940 909CO $$ooai:juser.fz-juelich.de:887940$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000887940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172013$$aForschungszentrum Jülich$$b0$$kFZJ
000887940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000887940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178892$$aForschungszentrum Jülich$$b2$$kFZJ
000887940 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)178892$$a IBI-3$$b2
000887940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b5$$kFZJ
000887940 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b6$$kFZJ
000887940 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000887940 9141_ $$y2020
000887940 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000887940 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000887940 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887940 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMELECTROCHEM : 2018$$d2020-09-06
000887940 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-06$$wger
000887940 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000887940 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000887940 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000887940 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887940 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000887940 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000887940 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000887940 920__ $$lyes
000887940 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000887940 980__ $$ajournal
000887940 980__ $$aVDB
000887940 980__ $$aUNRESTRICTED
000887940 980__ $$aI:(DE-Juel1)IBI-3-20200312
000887940 980__ $$aAPC
000887940 9801_ $$aAPC
000887940 9801_ $$aFullTexts