000887946 001__ 887946
000887946 005__ 20220930130257.0
000887946 0247_ $$2doi$$a10.1002/mrm.28597
000887946 0247_ $$2ISSN$$a0740-3194
000887946 0247_ $$2ISSN$$a1522-2594
000887946 0247_ $$2Handle$$a2128/27150
000887946 0247_ $$2pmid$$a33200403
000887946 0247_ $$2WOS$$aWOS:000589683000001
000887946 037__ $$aFZJ-2020-04538
000887946 082__ $$a610
000887946 1001_ $$0P:(DE-Juel1)165888$$aSchwerter, Michael$$b0
000887946 245__ $$aEfficient eddy current characterization using a 2D image‐based sampling scheme and a model‐based fitting approach
000887946 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021
000887946 3367_ $$2DRIVER$$aarticle
000887946 3367_ $$2DataCite$$aOutput Types/Journal article
000887946 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645541144_20024
000887946 3367_ $$2BibTeX$$aARTICLE
000887946 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887946 3367_ $$00$$2EndNote$$aJournal Article
000887946 520__ $$aPurposeTo propose two innovations to existing eddy current characterization techniques, which include (1) an efficient spatio‐temporal sampling scheme and (2) a model‐based fitting of spherical harmonic eddy current components.Theory and MethodsThis work introduces a three‐plane 2D image‐based acquisition scheme to efficiently sample eddy current fields. Additionally, a model‐based spherical harmonic decomposition is presented, which reduces fitting noise using a rank minimization to impose an exponential decay on the eddy current amplitude evolution. Both techniques are applied in combination and analyzed in simulations for their applicability in reconstructing suitable pre‐emphasis parameters. In a proof‐of‐concept measurement, the routine is tested for its propriety to correctly quantify user‐defined field dynamics. Furthermore, based on acquired precompensation and postcompensation eddy current data, the suitability of pre‐emphasis parameters calculated based on the proposed technique is evaluated.ResultsSimulation results derived from 500 data sets demonstrate the applicability of the acquisition scheme for the spatio‐temporal sampling of eddy current fields. Compared with a conventional data processing strategy, the proposed model‐based approach yields pre‐emphasis parameters that reduce the average maximum residual field offset within a 10‐cm‐diameter spherical volume from 3.17 Hz to 0.58 Hz. Experimental data prove the proposed routine to be suitable to measure and effectively compensate for eddy currents within 10 minutes of acquisition time.ConclusionThe proposed framework was found to be well‐suited to efficiently characterize and compensate for eddy current fields in a one‐time calibration effort. It can be applied to facilitate pre‐emphasis implementations, such as for dynamic B0 shimming applications
000887946 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000887946 588__ $$aDataset connected to CrossRef
000887946 7001_ $$0P:(DE-Juel1)162442$$aZimmermann, Markus$$b1
000887946 7001_ $$0P:(DE-Juel1)131761$$aFelder, Jörg$$b2
000887946 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b3$$eCorresponding author$$ufzj
000887946 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28597$$gp. mrm.28597$$n5$$p2892-2903$$tMagnetic resonance in medicine$$v85$$x1522-2594$$y2021
000887946 8564_ $$uhttps://juser.fz-juelich.de/record/887946/files/mrm.28597.pdf$$yOpenAccess
000887946 8767_ $$92020-10-29$$d2020-11-19$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000887946 909CO $$ooai:juser.fz-juelich.de:887946$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000887946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165888$$aForschungszentrum Jülich$$b0$$kFZJ
000887946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162442$$aForschungszentrum Jülich$$b1$$kFZJ
000887946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131761$$aForschungszentrum Jülich$$b2$$kFZJ
000887946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000887946 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000887946 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000887946 9141_ $$y2021
000887946 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000887946 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887946 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2018$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-05$$wger
000887946 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887946 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-05
000887946 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000887946 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000887946 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000887946 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000887946 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000887946 980__ $$ajournal
000887946 980__ $$aVDB
000887946 980__ $$aI:(DE-Juel1)INM-4-20090406
000887946 980__ $$aI:(DE-Juel1)INM-11-20170113
000887946 980__ $$aI:(DE-Juel1)VDB1046
000887946 980__ $$aAPC
000887946 980__ $$aUNRESTRICTED
000887946 9801_ $$aAPC
000887946 9801_ $$aFullTexts