| Home > Publications database > Efficient eddy current characterization using a 2D image‐based sampling scheme and a model‐based fitting approach > print |
| 001 | 887946 | ||
| 005 | 20220930130257.0 | ||
| 024 | 7 | _ | |a 10.1002/mrm.28597 |2 doi |
| 024 | 7 | _ | |a 0740-3194 |2 ISSN |
| 024 | 7 | _ | |a 1522-2594 |2 ISSN |
| 024 | 7 | _ | |a 2128/27150 |2 Handle |
| 024 | 7 | _ | |a 33200403 |2 pmid |
| 024 | 7 | _ | |a WOS:000589683000001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-04538 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Schwerter, Michael |0 P:(DE-Juel1)165888 |b 0 |
| 245 | _ | _ | |a Efficient eddy current characterization using a 2D image‐based sampling scheme and a model‐based fitting approach |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Wiley-Liss |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1645541144_20024 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a PurposeTo propose two innovations to existing eddy current characterization techniques, which include (1) an efficient spatio‐temporal sampling scheme and (2) a model‐based fitting of spherical harmonic eddy current components.Theory and MethodsThis work introduces a three‐plane 2D image‐based acquisition scheme to efficiently sample eddy current fields. Additionally, a model‐based spherical harmonic decomposition is presented, which reduces fitting noise using a rank minimization to impose an exponential decay on the eddy current amplitude evolution. Both techniques are applied in combination and analyzed in simulations for their applicability in reconstructing suitable pre‐emphasis parameters. In a proof‐of‐concept measurement, the routine is tested for its propriety to correctly quantify user‐defined field dynamics. Furthermore, based on acquired precompensation and postcompensation eddy current data, the suitability of pre‐emphasis parameters calculated based on the proposed technique is evaluated.ResultsSimulation results derived from 500 data sets demonstrate the applicability of the acquisition scheme for the spatio‐temporal sampling of eddy current fields. Compared with a conventional data processing strategy, the proposed model‐based approach yields pre‐emphasis parameters that reduce the average maximum residual field offset within a 10‐cm‐diameter spherical volume from 3.17 Hz to 0.58 Hz. Experimental data prove the proposed routine to be suitable to measure and effectively compensate for eddy currents within 10 minutes of acquisition time.ConclusionThe proposed framework was found to be well‐suited to efficiently characterize and compensate for eddy current fields in a one‐time calibration effort. It can be applied to facilitate pre‐emphasis implementations, such as for dynamic B0 shimming applications |
| 536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Zimmermann, Markus |0 P:(DE-Juel1)162442 |b 1 |
| 700 | 1 | _ | |a Felder, Jörg |0 P:(DE-Juel1)131761 |b 2 |
| 700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 3 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1002/mrm.28597 |g p. mrm.28597 |0 PERI:(DE-600)1493786-4 |n 5 |p 2892-2903 |t Magnetic resonance in medicine |v 85 |y 2021 |x 1522-2594 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/887946/files/mrm.28597.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:887946 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165888 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162442 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131761 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131794 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Neuroimaging |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-09-05 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MAGN RESON MED : 2018 |d 2020-09-05 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-09-05 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-09-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-05 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-05 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2020-09-05 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-05 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-05 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)VDB1046 |k JARA-BRAIN |l Jülich-Aachen Research Alliance - Translational Brain Medicine |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
| 980 | _ | _ | |a I:(DE-Juel1)VDB1046 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|