001     887946
005     20220930130257.0
024 7 _ |a 10.1002/mrm.28597
|2 doi
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 2128/27150
|2 Handle
024 7 _ |a 33200403
|2 pmid
024 7 _ |a WOS:000589683000001
|2 WOS
037 _ _ |a FZJ-2020-04538
082 _ _ |a 610
100 1 _ |a Schwerter, Michael
|0 P:(DE-Juel1)165888
|b 0
245 _ _ |a Efficient eddy current characterization using a 2D image‐based sampling scheme and a model‐based fitting approach
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645541144_20024
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeTo propose two innovations to existing eddy current characterization techniques, which include (1) an efficient spatio‐temporal sampling scheme and (2) a model‐based fitting of spherical harmonic eddy current components.Theory and MethodsThis work introduces a three‐plane 2D image‐based acquisition scheme to efficiently sample eddy current fields. Additionally, a model‐based spherical harmonic decomposition is presented, which reduces fitting noise using a rank minimization to impose an exponential decay on the eddy current amplitude evolution. Both techniques are applied in combination and analyzed in simulations for their applicability in reconstructing suitable pre‐emphasis parameters. In a proof‐of‐concept measurement, the routine is tested for its propriety to correctly quantify user‐defined field dynamics. Furthermore, based on acquired precompensation and postcompensation eddy current data, the suitability of pre‐emphasis parameters calculated based on the proposed technique is evaluated.ResultsSimulation results derived from 500 data sets demonstrate the applicability of the acquisition scheme for the spatio‐temporal sampling of eddy current fields. Compared with a conventional data processing strategy, the proposed model‐based approach yields pre‐emphasis parameters that reduce the average maximum residual field offset within a 10‐cm‐diameter spherical volume from 3.17 Hz to 0.58 Hz. Experimental data prove the proposed routine to be suitable to measure and effectively compensate for eddy currents within 10 minutes of acquisition time.ConclusionThe proposed framework was found to be well‐suited to efficiently characterize and compensate for eddy current fields in a one‐time calibration effort. It can be applied to facilitate pre‐emphasis implementations, such as for dynamic B0 shimming applications
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zimmermann, Markus
|0 P:(DE-Juel1)162442
|b 1
700 1 _ |a Felder, Jörg
|0 P:(DE-Juel1)131761
|b 2
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/mrm.28597
|g p. mrm.28597
|0 PERI:(DE-600)1493786-4
|n 5
|p 2892-2903
|t Magnetic resonance in medicine
|v 85
|y 2021
|x 1522-2594
856 4 _ |u https://juser.fz-juelich.de/record/887946/files/mrm.28597.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:887946
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165888
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131761
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2018
|d 2020-09-05
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-09-05
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21