000887959 001__ 887959
000887959 005__ 20220930130257.0
000887959 0247_ $$2doi$$a10.3389/fnagi.2020.576627
000887959 0247_ $$2Handle$$a2128/26211
000887959 0247_ $$2altmetric$$aaltmetric:94675182
000887959 0247_ $$2pmid$$apmid:33192468
000887959 0247_ $$2WOS$$aWOS:000585389400001
000887959 037__ $$aFZJ-2020-04545
000887959 041__ $$aEnglish
000887959 082__ $$a610
000887959 1001_ $$0P:(DE-HGF)0$$aBehfar, Qumars$$b0
000887959 245__ $$aGraph Theory Analysis Reveals Resting-State Compensatory Mechanisms in Healthy Aging and Prodromal Alzheimer’s Disease
000887959 260__ $$aLausanne$$bFrontiers Research Foundation$$c2020
000887959 3367_ $$2DRIVER$$aarticle
000887959 3367_ $$2DataCite$$aOutput Types/Journal article
000887959 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605695180_7417
000887959 3367_ $$2BibTeX$$aARTICLE
000887959 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887959 3367_ $$00$$2EndNote$$aJournal Article
000887959 520__ $$aSeveral theories of cognitive compensation have been suggested to explain sustained cognitive abilities in healthy brain aging and early neurodegenerative processes. The growing number of studies investigating various aspects of task-based compensation in these conditions is contrasted by the shortage of data about resting-state compensatory mechanisms. Using our proposed criterion-based framework for compensation, we investigated 45 participants in three groups: (i) patients with mild cognitive impairment (MCI) and positive biomarkers indicative of Alzheimer’s disease (AD); (ii) cognitively normal young adults; (iii) cognitively normal older adults. To increase reliability, three sessions of resting-state functional magnetic resonance imaging for each participant were performed on different days (135 scans in total). To elucidate the dimensions and dynamics of resting-state compensatory mechanisms, we used graph theory analysis along with volumetric analysis. Graph theory analysis was applied based on the Brainnetome atlas, which provides a connectivity-based parcellation framework. Comprehensive neuropsychological examinations including the Rey Auditory Verbal Learning Test (RAVLT) and the Trail Making Test (TMT) were performed, to relate graph measures of compensatory nodes to cognition. To avoid false-positive findings, results were corrected for multiple comparisons. First, we observed an increase of degree centrality in cognition related brain regions of the middle frontal gyrus, precentral gyrus and superior parietal lobe despite local atrophy in MCI and healthy aging, indicating a resting-state connectivity increase with positive biomarkers. When relating the degree centrality measures to cognitive performance, we observed that greater connectivity led to better RAVLT and TMT scores in MCI and, hence, might constitute a compensatory mechanism. The detection and improved understanding of the compensatory dynamics in healthy aging and prodromal AD is mandatory for implementing and tailoring preventive interventions aiming at preserved overall cognitive functioning and delayed clinical onset of dementia.
000887959 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000887959 588__ $$aDataset connected to CrossRef
000887959 7001_ $$0P:(DE-HGF)0$$aBehfar, Stefan Kambiz$$b1
000887959 7001_ $$0P:(DE-HGF)0$$avon Reutern, Boris$$b2
000887959 7001_ $$0P:(DE-HGF)0$$aRichter, Nils$$b3
000887959 7001_ $$0P:(DE-Juel1)162382$$aDronse, Julian$$b4
000887959 7001_ $$0P:(DE-HGF)0$$aFassbender, Ronja$$b5
000887959 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b6
000887959 7001_ $$0P:(DE-HGF)0$$aOnur, Oezguer A.$$b7$$eCorresponding author
000887959 773__ $$0PERI:(DE-600)2558898-9$$a10.3389/fnagi.2020.576627$$gVol. 12, p. 576627$$p576627$$tFrontiers in aging neuroscience$$v12$$x1663-4365$$y2020
000887959 8564_ $$uhttps://juser.fz-juelich.de/record/887959/files/Behfar_2020_FrontAgingNeurosci_2020_Graph%20theory....pdf$$yOpenAccess
000887959 8767_ $$82020-0284254-6$$d2020-11-20$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507.50 USD, Reporting 2020-10
000887959 909CO $$ooai:juser.fz-juelich.de:887959$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000887959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000887959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000887959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ
000887959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000887959 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000887959 9141_ $$y2020
000887959 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-10-08
000887959 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887959 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT AGING NEUROSCI : 2018$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887959 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-10-08
000887959 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-08
000887959 920__ $$lyes
000887959 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000887959 9801_ $$aFullTexts
000887959 980__ $$ajournal
000887959 980__ $$aVDB
000887959 980__ $$aUNRESTRICTED
000887959 980__ $$aI:(DE-Juel1)INM-3-20090406
000887959 980__ $$aAPC