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Abstract The photoproduction of the J/ψ off the proton
is believed to deepen our understanding of various physics
issues. On the one hand, it is proposed to provide access to
the origin of the proton mass, based on the QCD multipole
expansion. On the other hand, it can be employed in a study
of pentaquark states. The process is usually assumed to pro-
ceed through vector-meson dominance, that is the photon
couples to a J/ψ which rescatters with the proton to give the
J/ψp final state. In this paper, we provide a compelling hint
for and propose measurements necessary to confirm a novel
production mechanism via the Λc D̄(∗) intermediate states.
In particular, there must be cusp structures at the Λc D̄(∗)

thresholds in the energy dependence of the J/ψ photopro-
duction cross section. The same mechanism also implies the
J/ψ-nucleon scattering lengths of order 1 mfm. Given this,
one expects only a minor contribution of charm quarks to the
nucleon mass.

1 Introduction

Understanding how strong interactions work in the non-
perturbative regime of quantum chromodynamics (QCD)
remains one of the most challenging tasks of the Standard
Model. One fundamental problem tied to the nonperturba-
tive nature of QCD is how the visible matter of the uni-
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verse gets most of its mass that can be translated to how
the proton and neutron—the fundamental ingredients of all
kinds of nuclei in the universe—acquire their masses. It
was suggested that the near-threshold production of heavy
quarkonium is sensitive to the trace anomaly contribution
to the nucleon mass [1–3] which may be measured at the
Jefferson Laboratory and future electron-ion colliders [4]
(for recent discussions see, for example, Refs. [5,6]). This
suggestion is based on the vector-meson-dominance (VMD)
model and the assumption that the nucleon interacts with
a heavy quarkonium through multiple-gluon exchange, as
illustrated in Fig. 1. If this is indeed the dominant mech-
anism, the near-threshold J/ψ photoproduction cross sec-
tion would provide the link to the J/ψp elastic scattering
amplitude at low energies which is fundamentally important
because the J/ψp scattering length can be related to the
nucleon matrix element of two-gluon operators and thereby
to the trace anomaly contribution to the nucleon mass. Also,
a possible existence of the quarkonium-nucleus bound states
first proposed in Ref. [7] crucially depends on the strength
of J/ψN interaction at low energies, characterised by the
J/ψp scattering length. A loophole with this mechanism is,
however, that it relies on the QCD multipole expansion, see
below.

Another fundamental issue of nonperturbative QCD is
that it is still unclear how the hadron spectrum is organized.
In particular, exotic hadrons such as multiquark states are
being sought experimentally and studied theoretically using
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Fig. 1 Vector-meson dominance model mechanism for the near-
threshold J/ψ photoproduction

phenomenological models, effective field theories and lattice
QCD. In the last two decades, tens of states beyond the con-
ventional quark model were found, many of them by different
experiments in different reactions. However, their structure
still needs to be resolved. For recent reviews on both the-
oretical and experimental aspects of exotics in the heavy
quark sector see, for example, Refs. [8–16]. An intriguing
recent discovery was a set of hidden-charm pentaquark can-
didates, observed in the Λb decays by the LHCb Collabora-
tion [17,18] and called Pc states, which triggered a flood of
theoretical investigations. However, a subsequent search of
the Pc states in the GlueX experiment using the photoproduc-
tion process γ p → J/ψp did not reveal any signal [19]. The
analyses in Refs. [20,21] which conclude that the branching
fraction of the Pc → J/ψp should be at most a few per cent
are also based on the VMD model: The photon is assumed
to convert to a J/ψ which rescatters then with the proton
target to form Pc states. In fact, VMD is generally assumed
in estimating the cross sections for the photoproduction of
hidden-charm and hidden-bottom pentaquark states [22–33].

The rich physical implications related to the photoproduc-
tion of the J/ψ off the proton provide a strong motivation
to revise the assumptions underlying the VMD approach,
and identify its possible caveats. Specifically, (i) the J/ψ
attached to the photon is highly off-shell while the J/ψp scat-
tering length is defined for the on-shell scattering amplitude;
(ii) the Λ+

c D̄
0 threshold is only 116 MeV above the J/ψp

threshold, rendering the contribution from the Λc D̄ channel
potentially sizeable and thus making the relation between the
photoproduction cross section and the trace anomaly contri-
bution to the nucleon mass even more obscure. In this paper,
we investigate the implications of the latter observation.

We propose a new coupled-channel (CC) mechanism
for the near-threshold J/ψ photoproduction which is not
directly related to the nucleon matrix element of the gluonic
operator since the J/ψp final state is produced through the
nearby open-charm channels Λc D̄ and Λc D̄∗, see Fig. 2. In
particular, we demonstrate that the data recently measured
at GlueX can be quantitatively understood using this mecha-
nism with reasonable parameters. With this mechanism, the

Fig. 2 Mechanism for the near-threshold J/ψ photoproduction
through Λc D̄(∗) which then rescatter into J/ψp

Fig. 3 Feynman diagram for the proposed CC mechanism. The dashed
blue line pinpoints the open-charm intermediate state

direct relation between the trace anomaly contribution to the
nucleon mass and the J/ψ near-threshold photoproduction,
that is present in the VMD model, is obscured. We discuss
the implications of this mechanism, and suggest experimen-
tal observables which should allow one to test the picture
outlined here.

2 Coupled-channel mechanism

The cross section for the inclusive production of a charm and
anti-charm quark pair, γ p → cc̄X with X denoting every-
thing that is not detected, is about two orders of magnitude
higher than that for the exclusive production of the J/ψ ,
γ p → J/ψp (for a compilation of the data and a VMD
model fit see Ref. [34]). This might indicate that the cross
sections for the pairs of open-charm mesons and baryons are
sizeable, which was also expected in Ref. [35]. Then, open-
charm channels close to the J/ψp threshold could potentially
contribute significantly to the J/ψp production. While there
are no data for the photoproduction of open-charm chan-
nels in the pertinent energy region yet, it should be noted
that the cross sections for the analogous reactions in the
strangeness sector, γ p → K+Λ/K+Σ0 [36–40], are indeed
much larger than that for the near-threshold φ meson produc-
tion, γ p → φp [41–43].

For the J/ψp photoproduction off the proton, the clos-
est open-charm channels are Λ+

c D̄
0 and Λ+

c D̄
∗0 with the

thresholds just 116 and 258 MeV above the J/ψp threshold,
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respectively. In this paper, we investigate the contribution of
these channels to the J/ψp photoproduction. Not only is the
cross section estimated by considering the exchange of D(∗)

and Λ+
c , as shown in Fig. 3, but also are general features of

the resulting rates identified and possible future experiments
suggested to test the proposed mechanism.

In the near-threshold region, it is sufficient to consider
effective Lagrangians that have the smallest number of
derivatives, which are given as follows,

LΛcDN = −gD∗NΛcΛ̄cγμND∗μ − igDNΛcΛ̄cγ5ND

−gD∗NΛc N̄γμΛcD
∗μ† − igDNΛc N̄γ5ΛcD

†,

(1)

Lψ = −gψDD∗ψμεμναβ

(
∂νD

∗
α∂βD

† − ∂νD∂βD
∗†
α

)
,

+igψD∗D∗ψμ
(
D∗ν∂νD

∗†
μ − ∂νD

∗
μD

∗ν†

−D∗ν
↔
∂ μD

∗†
ν

) − igψDDD
†↔
∂ μDψμ

+gψΛcΛcΛ̄cγμψμΛc, (2)

Lγ = −gγ DD∗Fμνε
μναβ(D∗

α

↔
∂ βD

† − D
↔
∂ βD

∗†
α )

−igγ D∗D∗FμνD∗†
μ D∗

ν − eΛ̄cγμA
μΛ, (3)

where D and D∗ refer to the fields for the neutral charmed
mesons, e is the elementary (positive) electric charge (α =
e2/(4π) � 1/137) and the couplings gψDD = g2mD

√
mψ ,

gψDD∗ = g2
√
mψmD/mD∗ , gψD∗D∗ = g2mD∗√mψ are

related to the same coupling constant g2 through heavy quark
spin symmetry [44,45].

Since electric charge conservation law allows only for
a contribution of the neutral D(∗) mesons (see Fig. 3), the
Lagrangian γ D(∗)D∗ in Eq. (3) contains only magnetic inter-
actions. The corresponding couplings can be fixed directly
from the data on the experimentally measured total width of
the D∗+ meson (the unknown total width of the D∗0 meson
is evaluated using isospin symmetry) and the branching frac-
tion of the decay D∗0 → D0γ [46]. For the other couplings
we employ predictions of phenomenological approaches, the
corresponding values are collected in Table 1. We notice that
using the couplings gDNΛc = −10.7 and gD∗NΛc = −5.8
obtained from the light-cone sum rules [49,50] give similar
results which we therefore do not quote here.

3 Comparison with the data

The amplitude for the box diagram from Fig. 3 is evaluated
using a dispersion relation as

1

π

∫ scut

th

Aγ p→Λ+
c D̄(∗)0(s′)ρ(s′)AJ/ψp→Λ+

c D̄(∗)0(s′)
s′ − s

ds′, (4)

with th = (mΛc + mD̄(∗) )2, where both amplitudes A
involved are worked out using the Lagrangians (1)–(3), and

ρ = qcm/(8π
√
s) is the two-body phase space with

√
s and

qcm the energy and the magnitude of the three-momentum in
the center-of-mass frame, respectively. The dispersive inte-
gral in Eq. (4) is cut off at

√
scut =

√
q2

max + m2
Λc

+
√
q2

max + m2
D, (5)

with a natural value for qmax being about 1 GeV. Only the
contribution of the S wave is retained for the open-charm
system D̄(∗)Λc near threshold while both S and D waves are
considered for the J/ψp and γ p systems.

To take into account that the exchanged particles (doubly-
wavy lines in Fig. 3) are off-shell with a potentially large
virtuality, we augment them with a single-pole form fac-
tor [44,51,52],

F(t) = Λ2 − m2
ex

Λ2 − t
, (6)

with mex the mass of the exchanged particle, which is con-
sistent with the QCD counting rules [44,51]. A natural value
for the cutoff Λ is the mass of the lowest neglected exchange
particle, so that we set [52]

Λ = mex + ηΛQCD, (7)

where ΛQCD � 250 MeV and the parameter η which depends
on both exchanged and external particles [52] is expected to
be of order unity. For simplicity, if not stated otherwise, we
set η = 1 and ΛQCD = 250 MeV for all exchanged particles.

The cross section as a function of the photon energy cal-
culated using the amplitude (4) with the parameters from
Table 1 is shown in Fig. 4 in comparison with the data. No
parameter is fitted or fine-tuned. Although the approach used
suffers from several uncertainties (badly determined cou-
plings and form factors and only a limited set of diagrams
considered to be mentioned in the first place), we notice that
not only does the cross section we obtain appear to have the
right order of magnitude but it also demonstrates a shape
compatible with the data. We therefore dare to conclude that
the open-charm loop mechanism advocated here does indeed
have the opportunity to make an important, possibly dominat-
ing, contribution to the J/ψ photoproduction off the nucleon.

4 Predictions and possible tests

We collect several immediate predictions of the mechanism
discussed in this paper, and enumerate further experimental
tests which should allow either to consolidate or falsify the
picture outlined here.

123



 1053 Page 4 of 6 Eur. Phys. J. C          (2020) 80:1053 

Table 1 Values of the couplings
in the Lagrangians in
Eqs. (1)–(3) used in the
calculation

Coupling gγ DD∗ gγ D∗D∗ gDNΛc gD∗NΛc gψΛcΛc gψDD

Value 0.134 GeV−1 0.641 −4.3 −13.2 −1.4 7.44

Source Experimental data [46] SU(4) [47,48] VMD [47,48]

Fig. 4 Comparison of the J/ψ photoproduction through the open-
charm loops as shown in Figs. 2 and 3 with the GlueX data [19]. Eγ

is the photon energy in the rest frame of the initial proton. Since we
consider only the Λc D̄(∗) channels, the comparison with the data is
only shown up to Eγ = 10.2 GeV though a qualitative agreement up
to the highest GlueX data point 11.6 GeV is also achieved. The vertical
dotted lines indicate the Λc D̄(∗) thresholds

4.1 Threshold cusps

The hypothesis that the suggested production mechanism
through charmed intermediate states indeed dominates the
J/ψ production leads to a unique prediction that can be
verified in near-future experiments: There must be sizeable
cusps at the Λc D̄ and Λc D̄∗ thresholds. This is a univer-
sal phenomenon for S-wave thresholds, and the cusp shape
is a measure of the strength of the transition leading to the
cusp (for a recent review of cusps in hadronic reactions, see
Ref. [15]). Consequently, in the present data shown in Fig. 4,
one is tempted to interpret a relatively low cross section at
Eγ = 9.1 GeV as an indication of a nontrivial energy depen-
dence of the cross section near an open-charm meson-baryon
threshold. The presence of such cusps as a clear indication
of the importance of the charm loops is a central finding of
this paper.

4.2 Production of open-charm final states

Within the model advocated in this work we are in a position
to provide an order-of-magnitude estimate (neglecting the
fine cusp structure that should also be present at the Λc D̄∗
threshold) for the not yet measured reactions γ p → Λc D̄(∗),
see Fig. 5. As an illustration of the sensitivity to the form
factor, we show the results for η = 0.5 and 1.

Fig. 5 Estimates of the cross sections for the γ p → Λc D̄ (blue curves)
and γ p → Λc D̄∗ (orange curves) reactions

The cross sections of the γ p → Λc D̄(∗) reactions were
calculated in Ref. [30] considering exchanges of s-channel
hidden-charm pentaquarks and t-channel D∗ mesons using
the VMD model. The corresponding predictions appear an
order of magnitude smaller than those presented in Fig. 5,
which provides an additional support for the importance of
the open-charm mechanism suggested in this work.

4.3 J/ψ-nucleon scattering lengths

The suggested approach can be employed to evaluate the
J/ψ-nucleon scattering lengths, replacing the photon by a
J/ψ in Fig. 3. The results then appear to have the order of
several units of mfm. In particular, varying the parameter η,
which affects this observable most strongly, between η = 0.5
and η = 2, we find

∣
∣∣aJ=1/2

∣
∣∣ = 0.2 . . . 3.1 mfm,

∣
∣∣aJ=3/2

∣
∣∣ = 0.2 . . . 3.0 mfm,

(8)

where J corresponds to the total angular momentum of the
J/ψ-nucleon system. These numbers are comparable with
the recent estimation of the J/ψp scattering length from the
GlueX data using the VMD model [53,54] but much smaller
than the results of the two-gluon exchange calculation using
the multipole expansion [55,56], for a summary of the results
from other calculations we refer to Ref. [54]. The interactions
between a nucleon and a quarkonium have also been studied
on lattice, e.g., in Refs. [57–60]. In the most recent lattice
QCD calculation of J/ψN scattering of Ref. [57], the lat-
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tice spectra in the one-channel approximation were found to
be consistent with an almost non-interacting J/ψN system.
As stressed in Ref. [57], the lattice results suggest that the
existence of the Pc resonances within a one-channel J/ψN
scattering is not favored in QCD and that the strong coupling
between the N J/ψ with other two-hadron channels might
be responsible for the existence of the Pc resonances. This
conclusion is in line with the current analysis.

5 Summary

In this paper, we provided evidence that the near-threshold
J/ψ photoproduction could well be dominated by loops with
open charm hadrons. We found that the existing experimen-
tal data on γ p → J/ψp can be described within the sug-
gested mechanism through the Λc D̄(∗) intermediate states
if all the parameters of the model take their natural values.
We identified a clear experimental signature for this picture:
The process is necessarily accompanied by the appearance
of two pronounced cusps located at the Λc D̄ and the Λc D̄∗
thresholds, and found the existing data consistent with this
feature within their accuracy. Since the strength of the cusps
is connected to the rate for γ p → Λc D̄(∗), we also pro-
vided an estimate for the expected rate into the open-charm
channels and extracted the J/ψ-nucleon scattering length.
Although all predictions reported in this paper should be
regarded as order-of-magnitude estimates, their agreement
with the existing data on the J/ψ photoproduction off the
proton is remarkable. Therefore, further experimental tests
of these predictions are crucial to get a deeper understanding
of the J/ψ photoproduction reaction. The ongoing measure-
ments of the J/ψ photoproduction in Hall C at Jefferson
Laboratory [26], which has higher statistics than GlueX, and
measurements of the Λc D̄(∗) production will provide crucial
information. The prediction of the tiny J/ψ-nucleon scatter-
ing lengths can be tested using lattice QCD.

It should be stressed that if the open-charm loops dis-
cussed above indeed dominate the J/ψ-nucleon scattering,
as suggested in this paper, the connection between the trace
anomaly and the J/ψ-nucleon scattering length is lost. This
is similar to the observation that the ratio of the decays
ψ(2S) → J/ψ(π0/η) cannot be used for an extraction of
the light quark mass ratio mu/md if charmed meson loops
contribute to the transitions significantly [61]. This observa-
tion is intimately related to the QCD multipole expansion,
that does not seem work well in certain processes related to
charmonium systems. A further test of this physics discussed
here would be a lattice calculation of the J/ψ-nucleon scat-
tering lengths, which could only be estimated in the approach
used here.
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