000887968 001__ 887968
000887968 005__ 20230224084259.0
000887968 0247_ $$2doi$$a10.1016/j.jmps.2020.104222
000887968 0247_ $$2ISSN$$a0022-5096
000887968 0247_ $$2ISSN$$a1873-4782
000887968 0247_ $$2Handle$$a2128/33543
000887968 0247_ $$2WOS$$aWOS:000698509700001
000887968 037__ $$aFZJ-2020-04554
000887968 082__ $$a530
000887968 1001_ $$0P:(DE-Juel1)186706$$aBudnitzki, M.$$b0
000887968 245__ $$aA model for the interaction of dislocations with planar defects based on Allen–Cahn type microstructure evolution coupled to strain gradient elasticity
000887968 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000887968 3367_ $$2DRIVER$$aarticle
000887968 3367_ $$2DataCite$$aOutput Types/Journal article
000887968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673594603_16664
000887968 3367_ $$2BibTeX$$aARTICLE
000887968 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000887968 3367_ $$00$$2EndNote$$aJournal Article
000887968 520__ $$aIn classical elasticity theory the stress-field of a dislocation is characterized by a -type singularity. When such a dislocation is considered together with an Allen-Cahn-type phase-field description for microstructure evolution this leads to singular driving forces for the order parameter, resulting in non-physical (and discretization-dependent) predictions for the interaction between dislocations and phase-, twin- or grain-boundaries. We introduce a framework based on first strain gradient elasticity to regularize the dislocation core. It is shown that the use of strain energy density that is quadratic in the gradient of elastic deformation results in non-singular stresses but may result in singular driving forces, whereas a strain energy, which is quadratic in the gradient of the full deformation tensor, regularizes both stresses and driving forces for the order parameter and is therefore a suitable choice. The applicability of the framework is demonstrated using a comprehensive example.
000887968 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000887968 588__ $$aDataset connected to CrossRef
000887968 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b1$$eCorresponding author$$ufzj
000887968 773__ $$0PERI:(DE-600)2012341-3$$a10.1016/j.jmps.2020.104222$$gp. 104222 -$$p104222 -$$tJournal of the mechanics and physics of solids$$v150$$x0022-5096$$y2021
000887968 8564_ $$uhttps://juser.fz-juelich.de/record/887968/files/Invoice_OAD0000081830.pdf
000887968 8564_ $$uhttps://juser.fz-juelich.de/record/887968/files/1-s2.0-S0022509620304397-main.pdf$$yOpenAccess
000887968 8767_ $$8OAD0000081830$$92020-11-18$$d2020-11-20$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200159968
000887968 909CO $$ooai:juser.fz-juelich.de:887968$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000887968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186706$$aForschungszentrum Jülich$$b0$$kFZJ
000887968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b1$$kFZJ
000887968 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000887968 9141_ $$y2022
000887968 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-31
000887968 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000887968 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MECH PHYS SOLIDS : 2018$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000887968 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-31
000887968 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-31$$wger
000887968 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-31
000887968 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000887968 980__ $$ajournal
000887968 980__ $$aVDB
000887968 980__ $$aUNRESTRICTED
000887968 980__ $$aI:(DE-Juel1)IAS-9-20201008
000887968 980__ $$aAPC
000887968 9801_ $$aAPC
000887968 9801_ $$aFullTexts