Home > Publications database > A model for the interaction of dislocations with planar defects based on Allen–Cahn type microstructure evolution coupled to strain gradient elasticity > print |
001 | 887968 | ||
005 | 20230224084259.0 | ||
024 | 7 | _ | |a 10.1016/j.jmps.2020.104222 |2 doi |
024 | 7 | _ | |a 0022-5096 |2 ISSN |
024 | 7 | _ | |a 1873-4782 |2 ISSN |
024 | 7 | _ | |a 2128/33543 |2 Handle |
024 | 7 | _ | |a WOS:000698509700001 |2 WOS |
037 | _ | _ | |a FZJ-2020-04554 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Budnitzki, M. |0 P:(DE-Juel1)186706 |b 0 |
245 | _ | _ | |a A model for the interaction of dislocations with planar defects based on Allen–Cahn type microstructure evolution coupled to strain gradient elasticity |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673594603_16664 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In classical elasticity theory the stress-field of a dislocation is characterized by a -type singularity. When such a dislocation is considered together with an Allen-Cahn-type phase-field description for microstructure evolution this leads to singular driving forces for the order parameter, resulting in non-physical (and discretization-dependent) predictions for the interaction between dislocations and phase-, twin- or grain-boundaries. We introduce a framework based on first strain gradient elasticity to regularize the dislocation core. It is shown that the use of strain energy density that is quadratic in the gradient of elastic deformation results in non-singular stresses but may result in singular driving forces, whereas a strain energy, which is quadratic in the gradient of the full deformation tensor, regularizes both stresses and driving forces for the order parameter and is therefore a suitable choice. The applicability of the framework is demonstrated using a comprehensive example. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Sandfeld, Stefan |0 P:(DE-Juel1)186075 |b 1 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.jmps.2020.104222 |g p. 104222 - |0 PERI:(DE-600)2012341-3 |p 104222 - |t Journal of the mechanics and physics of solids |v 150 |y 2021 |x 0022-5096 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/887968/files/Invoice_OAD0000081830.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/887968/files/1-s2.0-S0022509620304397-main.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:887968 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186706 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)186075 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-08-31 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-31 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MECH PHYS SOLIDS : 2018 |d 2020-08-31 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-31 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-08-31 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-31 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-31 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-31 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-9-20201008 |k IAS-9 |l Materials Data Science and Informatics |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-9-20201008 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|