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A B S T R A C T

In classical elasticity theory the stress-field of a dislocation is characterized by a 1∕𝑟-type
singularity. When such a dislocation is considered together with an Allen–Cahn-type phase-field
description for microstructure evolution this leads to singular driving forces for the order pa-
rameter, resulting in non-physical (and discretization-dependent) predictions for the interaction
between dislocations and phase-, twin- or grain-boundaries. We introduce a framework based on
first strain gradient elasticity to regularize the dislocation core. It is shown that the use of strain
energy density that is quadratic in the gradient of elastic deformation results in non-singular
stresses but may result in singular driving forces, whereas a strain energy, which is quadratic
in the gradient of the full deformation tensor, regularizes both stresses and driving forces for
the order parameter and is therefore a suitable choice. The applicability of the framework is
demonstrated using a comprehensive example.

. Introduction

Phase field approaches have proven to be very powerful for the investigation of the formation and evolution of microstructures
ue to solid–solid phase transformations and twinning. This appears to be the natural framework for the investigation of the
nteraction of planar crystal defects such as phase- or twin-boundaries with line defects (dislocations, disclinations). A typical
hase field model for diffusionless (martensitic) transformations comprises of evolution equations of Allen–Cahn-type for the order
arameters 𝜙𝛽

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 − 𝜌𝜕𝜙𝛽𝜓 , (1)

here 𝑀 and 𝛼 are constants, 𝜌 denotes the mass density, and 𝜓 is a bulk specific free energy. The subscript 𝛽 indicates the number
f the phase, grain or twin variant. Assuming a small perturbation setting, the linear strain tensor1 𝑬 can be additively decomposed
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1 Nomenclature: We denote vectors by bold lower case latin 𝒂 and greek 𝜶 letters. The dot operator ‘‘⋅’’ denotes the scalar product. Second order tensors are

enoted by bold uppercase latin letters 𝑨. We introduce a scalar product between second order tensors denoted by ‘‘:’’ as 𝑨 ∶ 𝑩 ∶= tr𝑨 ⋅ 𝑩⊤, where 𝑩⊤ is the
ranspose of 𝑩 and tr(⋅) denotes the trace operator. Similarly, we denote third order tensors  by bold calligraphic capital letters and ‘‘ ⋮ ’’ is the corresponding
calar product. We use black-board capital letters C for fourth-order tensors. Whenever index-notation is used, summation over latin indices appearing twice is
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into elastic 𝑬e and inelastic (i.e., eigenstrain) 𝑬in(𝜙𝛽 ) contributions, such that 𝑬e (𝑬 , 𝜙𝛽
)

= 𝑬 −𝑬in(𝜙𝛽 ). Assuming linear elasticity,
the stress 𝑺 is given by 𝑺 = C ∶ 𝑬e (𝑬 , 𝜙𝛽

)

, and the specific free energy takes the form

𝜓
(

𝑬 , 𝜙𝛽 , 𝜃
)

= 1
2
𝑬e (𝑬 , 𝜙𝛽

)

∶ C ∶ 𝑬e (𝑬 , 𝜙𝛽
)

+ 𝜓b
(

𝜙𝛽 , 𝜃
)

. (2)

As a consequence, the evolution equation (1) can be rewritten as

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 + 𝑺 ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) − 𝜌𝜕𝜙𝛽𝜓b . (3)

In linear elastic Volterra theory, the stresses diverge as the defect line is approached. In particular for dislocations the singularity
is of 1∕𝑟-type. As per Eq. (3), this results in singular driving forces for the evolution of the order parameters, effectively negating
the concepts of a nucleation barrier or a pile-up stress. Different approaches to regularize the stress in the core region exist in
literature based either on the concept of a distributed Burger’s vector (Lothe, 1992; Cai et al., 2006), which are inspired by richer
microscopic models for dislocations (Peierls, 1940; Nabarro, 1947), or generalized continuum theories (Lazar et al., 2005, 2006;
Lazar and Po, 2015; Po et al., 2018). However, the first strain gradient approach advocated by Po et al. (2018) has the advantage
that the obtained regularization is independent of the type of defect in question and therefore does not require any defect-specific
information for the determination of model parameters. In principle, these parameters can directly be obtained from atomistic
interaction potentials (Admal et al., 2017).

The purpose of this work is to follow a micromorphic approach in order to derive a framework which consistently couples first
strain gradient elasticity to Allen–Cahn-type microstructure evolution ensuring non-singular driving forces on the order parameters
in the presence of line defects.

2. Balance equations and boundary conditions

The principle of virtual power (PVP) provides a systematic way of deriving field equations and boundary conditions for arbitrary
mechanical and coupled problems (cf. Maugin, 1980; Germain, 1973; Del Piero, 2009). In the present work it is used in the following
form: The virtual power of the inertia forces 𝒫 ∗

a balances the virtual power 𝒫 ∗
int of the internal and 𝒫 ∗

ext of the external forces acting
on any sub-domain 𝒮 of the material body ℬ for any admissible virtual velocity field 𝒗∗ and virtual rate of order parameter field
𝜙̇∗
𝛽 , i.e.,

𝒫 ∗
a = 𝒫 ∗

int + 𝒫 ∗
ext . (4)

For the sake of simplicity we disregard any higher order inertia terms (Mindlin, 1964) as well as inertial forces acting on the order
parameter, resulting in

𝒫 ∗
a = ∫𝒮

𝜌𝒗̇ ⋅ 𝒗∗ d𝑉 . (5)

The power of internal forces is given by

𝒫 ∗
int = −∫𝒮

(

𝑺⊤ ∶ 𝑳∗ +  ⋮ grad𝑳∗ − 𝜋𝛽 𝜙̇∗
𝛽 + 𝝃𝛽 ⋅ grad 𝜙̇∗

𝛽

)

d𝑉 , (6)

with 𝑳∗ ∶= grad𝒗∗. Here 𝑺 and  are the Cauchy and higher order stresses, respectively, while 𝜋𝛽 and 𝝃𝛽 are thermodynamic
forces that directly correspond to the internal microforce and microstress introduced by Gurtin (1996). We note that the invariance
requirement of 𝒫 ∗

int with respect to superimposed rigid body motions is satisfied sufficiently by assuming 𝑺 = 𝑺⊤ and  ⋅𝒂 = ( ⋅𝒂)⊤
or arbitrary vectors 𝒂. For the power of external forces we consider the very simple case of no body or contact forces acting on 𝑳∗

nd grad 𝜙̇∗
𝛽 , and only a contact (micro)force 𝜁𝛽 acting 𝜙̇∗

𝛽

𝒫 ∗
ext = ∫𝒮

𝒇 ⋅ 𝒗∗𝜌d𝑉 + ∫𝜕𝒮

(

𝒕 ⋅ 𝒗∗ + 𝜁𝛽 𝜙̇∗
𝛽

)

d𝑎 . (7)

In order to obtain the consequences of the PVP, the integrals in Eq. (6) are transformed using the following identities

div (𝑺 ⋅ 𝒗∗) = (div𝑺) ⋅ 𝒗∗ + 𝑺 ∶ 𝑳∗ , (8)

div ( ∶ 𝑳∗) = (div  ) ∶ 𝑳∗ +  ⋮ grad𝑳∗ , (9)

div
(

(div  ) ⋅ 𝒗∗
)

= (div div  ) ⋅ 𝒗∗ + (div  ) ∶ 𝑳∗ , (10)

div (𝝃𝛽 𝜙̇∗
𝛽 ) = (div 𝝃𝛽 ) 𝜙̇∗

𝛽 + 𝝃𝛽 ⋅ grad 𝜙̇∗
𝛽 , (11)

nd the divergence theorem, resulting in

𝒫 ∗
int = ∫𝒮

(

div𝑺 − div div 
)

⋅ 𝒗∗ d𝑉 − ∫𝜕𝒮
𝒏 ⋅

(

𝑺⊤ − div 
)

⋅ 𝒗∗ d𝑎 − ∫𝜕𝒮
𝒏 ⋅  ∶ 𝑳∗ d𝑎

+∫𝒮

(

𝜋𝛽 + div 𝝃𝛽
)

𝜙̇∗
𝛽 d𝑉 − ∫𝜕𝒮

𝒏 ⋅ 𝝃𝛽 𝜙̇∗
𝛽 d𝑎 . (12)

ntroducing the surface gradient operator

grad (⋅) = grad(⋅) − 𝜕 (⋅)⊗ 𝒏 , (13)
2

S 𝒏
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where 𝜕𝒏 is the directional derivative in the direction of the outward normal 𝒏, the third integral in expression (12) can be rewritten
as

∫𝜕𝒮
𝒏 ⋅  ∶ 𝑳∗ d𝑎 = ∫𝜕𝒮

𝒏 ⋅  ∶ gradS 𝒗∗ d𝑎 + ∫𝜕𝒮
𝒏 ⋅  ∶ 𝜕𝒏𝒗∗ ⊗ 𝒏d𝑎 (14)

= ∫𝜕𝒮
divS

(

𝒏 ⋅  ⋅ 𝒗∗
)

d𝑎 − ∫𝜕𝒮
divS

(

𝒏 ⋅ 
)

⋅ 𝒗d𝑎 + ∫𝜕𝒮
𝒏 ⋅  ∶ 𝜕𝒏𝒗∗ ⊗ 𝒏d𝑎.

inally, applying the surface divergence theorem and, for the sake of simplicity, neglecting any wedge line and corner contributions,
e find

∫𝜕𝒮
divS

(

𝒏 ⋅  ⋅ 𝒗∗
)

d𝑎 = ∫𝜕𝒮

(

divS 𝒏
)

𝒏⊗ 𝒏 ∶  ⋅ 𝒗∗ d𝑎 . (15)

nforcing Eq. (4) we arrive after a number of straight forward algebraic manipulations at the following field equations on ℬ

𝜌𝒗̇ = div
(

𝑺 − div 
)

+ 𝜌𝒇 , (16a)

0 = div 𝝃𝛽 + 𝜋𝛽 , (16b)

nd boundary conditions on 𝜕ℬ

𝒕 =
(

𝑺 − div 
)

⋅ 𝒏 − divS
(

𝒏 ⋅ 
)

, (16c)

𝜁𝛽 = 𝝃𝛽 ⋅ 𝒏 . (16d)

e note that, introducing the total stress

𝑺t ∶= 𝑺 − div  , (17)

he balance of linear momentum (16a) regains its standard form for simple materials

𝜌𝒗̇ = div𝑺t + 𝜌𝒇 , (18)

hich is convenient for the numerical implementation.

. Constitutive equations

The following equations are formulated assuming a geometrically linear setting, i.e., the displacement gradient is considered to
e small ‖ grad 𝒖‖≪ 1. In this case the deformation is characterized by the linear strain tensor 𝑬 = 1

2

(

grad 𝒖 + (grad 𝒖)⊤
)

. Its gradient
will be denoted by  ∶= grad𝑬.

.1. Laws of state

We choose the following ansatz for the specific free energy and thermodynamic forces

𝜓 = 𝜓
(

𝑬 ,  , 𝜙𝛽 , grad𝜙𝛽 , 𝜃
)

, 𝑺 = 𝑺
(

𝑬 ,  , 𝜙𝛽 , grad𝜙𝛽 , 𝜃
)

,  = 
(

𝑬 ,  , 𝜙𝛽 , grad𝜙𝛽 , 𝜃
)

,

𝜋𝛽 = 𝜋𝛽
(

𝑬 ,  , 𝜙𝛽 , grad𝜙𝛽 , 𝜃 , 𝜙̇𝛽
)

, 𝝃𝛽 = 𝝃𝛽
(

𝑬 ,  , 𝜙𝛽 , grad𝜙𝛽 , 𝜃
)

.

he second law of the thermodynamics in the form of the Clausius–Duhem inequality, given for the isothermal case by
(

𝑺 − 𝜌𝜕𝑬𝜓
)

∶ 𝑬̇ +
(

 − 𝜌𝜕𝜓
)

⋮ ̇ −
(

𝜋𝛽 + 𝜌𝜕𝜙𝜓
)

𝜙̇ +
(

𝝃𝛽 − 𝜌𝜕grad𝜙𝛽𝜓
)

⋅ grad 𝜙̇𝛽 ⩾ 0, (19)

an be exploited using the classical Coleman–Noll procedure to arrive at the laws of state

𝑺 = 𝜌𝜕𝑬𝜓 ,  = 𝜌𝜕𝜓 , 𝝃𝛽 = 𝜌𝜕grad𝜙𝛽𝜓 (20)

nd the residual dissipation inequality

− 𝜋d
𝛽 𝜙̇𝛽 ⩾ 0 , with 𝜋d

𝛽 ∶= 𝜋𝛽 + 𝜌𝜕𝜙𝛽𝜓 . (21)

.2. Free energy and dissipation potential

As customary in phase field models for solid–solid transformations, the specific free energy can be split into an elastic, a bulk
hemical and an interface contribution

𝜓 = 𝜓e
(

𝑬 ,  , 𝜙𝛽 , 𝜃
)

+ 𝜓b
(

𝜙𝛽 , 𝜃
)

+ 𝜓i
(

𝜙𝛽 , grad𝜙𝛽 , 𝜃
)

, (22)

s indicated by the subscripts ‘‘e’’ (elastic), ‘‘b’’ (bulk chemical) and ‘‘i’’ (interface). In our formulation, the elastic free energy is of
elmholtz-type, i.e.,

𝜌𝜓
(

𝑬 ,  , 𝜙 , 𝜃
)

= 1𝑬e (𝑬 , 𝜙
)

∶ C(𝜙 ) ∶ 𝑬e (𝑬 , 𝜙
)

+ 1 (C(𝜙 ) ∶  ⋅𝜦(𝜙 )
)

⋮ , (23)
3

e 𝛽 2 𝛽 𝛽 𝛽 2 𝛽 𝛽
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or (24)

𝜌𝜓e
(

𝑬 ,  , 𝜙𝛽 , 𝜃
)

= 1
2
C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝐸e

𝑖𝑗 (𝑬 , 𝜙𝛽 )𝐸e
𝑘𝑙(𝑬 , 𝜙𝛽 ) +

1
2
C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝛬𝑚𝑛(𝜙𝛽 )

𝑛
𝑖𝑗

𝑚
𝑘𝑙 (25)

where 𝑬in(𝜙𝛽 ) is the inelastic strain, 𝑬e (𝑬 , 𝜙𝛽
)

∶= 𝑬 −𝑬in(𝜙𝛽 ) is the elastic strain, C(𝜙𝛽 ) the stiffness tensor and 𝜦(𝜙𝛽 ) a gradient
length scale tensor (cf. Po et al., 2018). The specific choice of functional dependence of 𝑬in(𝜙𝛽 ), 𝜓b

(

𝜙𝛽 , 𝜃
)

and 𝜓i
(

𝜙𝛽 , grad𝜙𝛽 , 𝜃
)

on the order parameter 𝜙𝛽 is of no relevance at this point; however, we will assume that the interface energy is of the form

𝜌𝜓i
(

𝜙𝛽 , grad𝜙𝛽 , 𝜃
)

∶= 𝛼
2
‖ grad𝜙𝛽‖2 + 𝑔(𝜙𝛽 , 𝜃) , 𝜌𝜓i

(

𝜙𝛽 , grad𝜙𝛽 , 𝜃
)

∶= 𝛼
2
𝜙,𝑖𝛽𝜙

,𝑖
𝛽 + 𝑔(𝜙𝛽 , 𝜃) . (26)

sing the laws of state (20) we immediately find

𝑺 = C(𝜙𝛽 ) ∶
(

𝑬 − 𝑬in(𝜙𝛽 )
)

, 𝑆𝑖𝑗 = C𝑖𝑗𝑘𝑙(𝜙𝛽 )
(

𝐸𝑘𝑙 − 𝐸in
𝑘𝑙 (𝜙𝛽 )

)

, (27a)

 = C(𝜙𝛽 ) ∶  ⋅𝜦(𝜙𝛽 ) ,  𝑖𝑗
𝑛 = C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝛬𝑚𝑛(𝜙𝛽 )

𝑚
𝑘𝑙 , (27b)

𝝃𝛽 = 𝛼 grad𝜙𝛽 , 𝜉𝑖𝛽 = 𝛼𝜙,𝑖𝛽 , (27c)

nd combining the first two equations

 = C(𝜙𝛽 ) ∶ grad
(

C−1(𝜙𝛽 ) ∶ 𝑺
)

⋅𝜦(𝜙𝛽 ) + C(𝜙𝛽 ) ∶ grad𝑬in(𝜙𝛽 ) ⋅𝜦(𝜙𝛽 ) , (28)

or (29)

 𝑖𝑗
𝑛 = C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝛬𝑚𝑛(𝜙𝛽 )

(

C−1
𝑘𝑙𝑝𝑞(𝜙𝛽 )𝑆

𝑝𝑞
),𝑚

+ C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝛬𝑚𝑛(𝜙𝛽 )𝐸
in,𝑚
𝑘𝑙 (𝜙𝛽 ) . (30)

Eq. (17) can now be used in two ways: In conjunction with the laws of state (27a) and (27b) it is a constitutive equation for the
total stress 𝑺t, which enters the balance of linear momentum (18)

𝑺t
(

𝑬 ,  , 𝜙𝛽
)

= C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

− div
[

C(𝜙𝛽 ) ∶  ⋅𝜦(𝜙𝛽 )
]

, (31)

or (32)

𝑆 𝑖𝑗t
(

𝑬 ,  , 𝜙𝛽
)

= C𝑖𝑗𝑘𝑙(𝜙𝛽 ) ∶ 𝐸e
𝑘𝑙
(

𝑬 , 𝜙𝛽
)

−
(

C𝑖𝑗𝑘𝑙(𝜙𝛽 ) ∶ 𝑚
𝑘𝑙𝛬𝑚𝑛

),𝑛 . (33)

When combined with Eq. (28), Eq. (17) can be used to determine the true stress 𝑺 from the total stress 𝑺t

𝑺 − div
[

C(𝜙𝛽 ) ∶ grad
(

C−1(𝜙𝛽 ) ∶ 𝑺
)

⋅𝜦(𝜙𝛽 )
]

= 𝑺t + div
(

C(𝜙𝛽 ) ∶ grad𝑬in(𝜙𝛽 ) ⋅𝜦(𝜙𝛽 )
)

, (34)

or (35)

𝑆 𝑖𝑗 −
[

C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝛬𝑚𝑛(𝜙𝛽 )
(

C−1
𝑘𝑙𝑝𝑞(𝜙𝛽 )𝑆

𝑝𝑞
),𝑚],𝑛

= 𝑆 𝑖𝑗t +
[

C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝛬𝑚𝑛(𝜙𝛽 )𝐸
in,𝑚
𝑘𝑙 (𝜙𝛽 )

],𝑛
. (36)

In order to complete the phase field formulation we require a constitutive equation for 𝜋d
𝛽 , which is obtained in the spirit of

classical irreversible thermodynamics as

𝜙̇𝛽 = −𝜕𝜋d
𝛽
𝛺
(

𝜋d
𝛽
)

(37)

from a dissipation potential 𝛺
(

𝜋d
𝛽
)

that is homogeneous of degree two

𝛺
(

𝜋d
𝛽
)

∶= 1
2
𝑀

(

𝜋d
𝛽
)2 , (38)

here 𝑀 is the so called mobility constant. Combining Eqs. (16b), (21), (27c), (37) and (38) we find the classical Allen–Cahn
quation

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 − 𝜌𝜕𝜙𝛽𝜓 , 𝑀−1𝜙̇𝛽 = 𝛼𝜙,𝑖𝑖𝛽 − 𝜌𝜕𝜙𝛽𝜓 , (39)

r, explicitly writing down the partial derivatives of 𝜓 ,

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 + 𝑺 ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) −

1
2
𝑬e (𝑬 , 𝜙𝛽

)

∶ 𝜕𝜙𝛽C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

− 1
2

(

C(𝜙𝛽 ) ∶  ⋅ 𝜕𝜙𝛽𝜦(𝜙𝛽 )
)

⋮ −

−1
2

(

𝜕𝜙𝛽C(𝜙𝛽 ) ∶  ⋅𝜦(𝜙𝛽 )
)

⋮ − 𝜌𝜕𝜙𝛽𝜓b(𝜙𝛽 , 𝜃) − 𝜕𝜙𝛽 𝑔(𝜙𝛽 , 𝜃) , (40)

or

𝑀−1𝜙̇𝛽 = 𝛼𝜙,𝑖𝑖𝛽 + 𝑆𝑖𝑗𝜕𝜙𝛽𝐸
in
𝑘𝑙 (𝜙𝛽 ) −

1
2
𝜕𝜙𝛽C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝐸

e
𝑖𝑗
(

𝑬 , 𝜙𝛽
)

𝐸e
𝑘𝑙
(

𝑬 , 𝜙𝛽
)

− 1
2
𝜕𝜙𝛽C

𝑖𝑗𝑘𝑙(𝜙𝛽 )𝛬𝑚𝑛(𝜙𝛽 )
𝑛
𝑖𝑗

𝑚
𝑘𝑙 −

−1
2
C𝑖𝑗𝑘𝑙(𝜙𝛽 )𝜕𝜙𝛽𝛬𝑚𝑛(𝜙𝛽 )

𝑛
𝑖𝑗

𝑚
𝑘𝑙 − 𝜌𝜕𝜙𝛽𝜓b(𝜙𝛽 , 𝜃) − 𝜕𝜙𝛽 𝑔(𝜙𝛽 , 𝜃) .

ote that all terms that appear in the driving force, and as per Lazar et al. (2005) the Cauchy stress 𝑺 in particular, are non-
singular even in the presence of dislocations. Interestingly, this is not true for an elastic specific free energy that is quadratic in

e ( ) e ( )
4

  , 𝜙𝛽 ∶= grad𝑬 𝑬 , 𝜙𝛽 rather that  (cf. Appendix).
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3.3. Formulation for specific cases

For phase transformations the crystal lattice on both sides of the interface will, in general, be different leading to different elastic
roperties and a different shape of the dislocation core. In this case the Eqs. (18), (31), (34) and (40) retain their full complexity.
owever, the strength of the general formulation is that it also covers simplified special cases. In the following, we consider scenarios

or which these equations can be strongly reduced and which therefore elucidates the structure of the whole formalism.

.3.1. Homogeneous bulk material
In the bulk phase the order parameter does not vary in space, i.e., grad𝜙𝛽 = 𝟎, C(𝜙𝛽 ) = C, 𝜦(𝜙𝛽 ) = 𝜦, 𝑬in(𝜙𝛽 ) = 𝟎. The Allen–Cahn

quation is fulfilled automatically and Eqs. (31) and (34) recover the form derived by Po et al. (2018)

𝑺 − div
(

(grad𝑺) ⋅𝜦
)

= 𝑺t , with 𝑺t
(

𝑬 , 
)

= C ∶
[

𝑬 − div
(

 ⋅𝜦
)]

. (41a)

or materials with cubic symmetry the gradient length scale tensor 𝜦 is isotropic, i.e., 𝜦 = 𝓁2𝑰 , and the above expressions can be
urther simplified to the form derived by Lazar et al. (2005)

𝑺 − 𝓁2𝛥𝑺 = 𝑺t , with 𝑺t
(

𝑬 , 
)

= C ∶
(

𝑬 − 𝓁2 div
)

= C ∶
(

𝑬 − 𝓁2𝛥𝑬
)

. (41b)

.3.2. Boundaries between grains without inelastic strain
The crystal lattices on both sides of a grain boundary differ only by a rotation 𝑸(𝜙𝛽 ). Hence, we assume that the chemical bulk

nergy is independent of the order parameter, i.e., 𝜓b
(

𝜙𝛽 , 𝜃
)

= 𝜓b (𝜃). Then the elastic stiffness C(𝜙𝛽 ) and the gradient length scale
ensor 𝜦(𝜙𝛽 ) can be expressed as C(𝜙𝛽 ) = 𝑸(𝜙𝛽 ) ∗ C and 𝜦(𝜙𝛽 ) = 𝑸(𝜙𝛽 ) ∗ 𝜦, respectively. In the absence of inelastic strain, we have

in(𝜙𝛽 ) = 𝟎. For this case Eqs. (34), (31) and (40) take the form

𝑺 − div
[

(

𝑸(𝜙𝛽 ) ∗ C
)

∶ grad
(

(

𝑸(𝜙𝛽 ) ∗ C−1) ∶ 𝑺
)

⋅
(

𝑸(𝜙𝛽 ) ∗ 𝜦
)

]

= 𝑺t , (42a)

with

𝑺t
(

𝑬 ,  , 𝜙𝛽
)

= C(𝜙𝛽 ) ∶ 𝑬 − div
[(

𝑸(𝜙𝛽 ) ∗ C
)

∶  ⋅
(

𝑸(𝜙𝛽 ) ∗ 𝜦
)]

, (42b)

and

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 −
1
2
𝑬 ∶

(

𝜕𝜙𝛽𝑸(𝜙𝛽 ) ∗ C
)

∶ 𝑬 − 1
2

(

(

𝑸(𝜙𝛽 ) ∗ C
)

∶  ⋅
(

𝜕𝜙𝛽𝑸 ∗ 𝜦
)

)

⋮ −

−1
2

(

(

𝜕𝜙𝛽𝑸(𝜙𝛽 ) ∗ C
)

∶  ⋅
(

𝑸(𝜙𝛽 ) ∗ 𝜦
)

)

⋮ − 𝜕𝜙𝛽 𝑔(𝜙𝛽 , 𝜃) . (42c)

The isotropy of the gradient length scale tensor 𝜦 for cubic crystals implies that 𝑸(𝜙𝛽 ) ∗ 𝜦 = 𝜦 = 𝓁2𝑰 , which simplifies Eqs. (38)
o the following form

𝑺 − 𝓁2 div
[

(

𝑸(𝜙𝛽 ) ∗ C
)

∶ grad
(

(

𝑸(𝜙𝛽 ) ∗ C−1) ∶ 𝑺
)]

= 𝑺t , (43a)

with

𝑺t
(

𝑬 ,  , 𝜙𝛽
)

= C(𝜙𝛽 ) ∶ 𝑬 − 𝓁2 div
[(

𝑸(𝜙𝛽 ) ∗ C
)

∶ 
]

, (43b)
and

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 −
1
2
𝑬 ∶

(

𝜕𝜙𝛽𝑸(𝜙𝛽 ) ∗ C
)

∶ 𝑬 − 1
2
𝓁2

(

(

𝜕𝜙𝛽𝑸(𝜙𝛽 ) ∗ C
)

∶ 
)

⋮ − 𝜕𝜙𝛽 𝑔(𝜙𝛽 , 𝜃) . (43c)

.3.3. Twin boundaries and boundaries between grains with inelastic strain
Since the twin variants on both sides of the boundary are related by mirror and/or rotational symmetry transformations

etween the unit cells, we can – as in the case of grain boundaries – assume that the bulk chemical energy remains unchanged,
.e., 𝜓b

(

𝜙𝛽 , 𝜃
)

= 𝜓b (𝜃), and the elastic stiffness C(𝜙𝛽 ) and the gradient length scale tensor 𝜦(𝜙𝛽 ) can be expressed using an
rthogonal tensor 𝑸(𝜙𝛽 ) as C(𝜙𝛽 ) = 𝑸(𝜙𝛽 ) ∗ C and 𝜦(𝜙𝛽 ) = 𝑸(𝜙𝛽 ) ∗ 𝜦, respectively. Under these assumptions we find

𝑺 − div
[

(

𝑸(𝜙𝛽 ) ∗ C
)

∶ grad
(

(

𝑸(𝜙𝛽 ) ∗ C−1) ∶ 𝑺
)

⋅
(

𝑸(𝜙𝛽 ) ∗ 𝜦
)

]

= 𝑺t + div
[

C(𝜙𝛽 ) ∶ grad
(

𝑬in(𝜙𝛽 )
)

⋅𝜦(𝜙𝛽 )
]

, (44a)

with

𝑺t
(

𝑬 ,  , 𝜙𝛽
)

= C(𝜙𝛽 ) ∶ 𝑬e(𝑬) − div
[(

𝑸(𝜙𝛽 ) ∗ C
)

∶  ⋅
(

𝑸(𝜙𝛽 ) ∗ 𝜦
)]

, (44b)
and

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 + 𝑺 ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) −

1
2
𝑬e (𝑬 , 𝜙𝛽

)

∶
(

𝜕𝜙𝛽𝑸(𝜙𝛽 ) ∗ C
)

∶ 𝑬e (𝑬 , 𝜙𝛽
)

−

−1
2

(

(

𝑸(𝜙𝛽 ) ∗ C
)

∶  ⋅
(

𝜕𝜙𝛽𝑸 ∗ 𝜦
)

)

⋮ − 1
2

(

(

𝜕𝜙𝛽𝑸(𝜙𝛽 ) ∗ C
)

∶  ⋅
(

𝑸(𝜙𝛽 ) ∗ 𝜦
)

)

⋮ − 𝜕𝜙𝛽 𝑔(𝜙𝛽 , 𝜃) . (44c)

or cubic lattices these expressions simplify to

𝑺 − 𝓁2 div
[

(

𝑸(𝜙 ) ∗ C
)

∶ grad
(

(

𝑸(𝜙 ) ∗ C−1) ∶ 𝑺
)]

= 𝑺 + 𝓁2 div
[

C(𝜙 ) ∶ grad𝑬in(𝜙 )
]

, (45a)
5

𝛽 𝛽 t 𝛽 𝛽
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Fig. 1. Shear stress component 𝑆12 for a single edge dislocation. The inset in (a) shows the simulation setup.

with

𝑺t
(

𝑬 ,  , 𝜙𝛽
)

= C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

− 𝓁2 div
[(

𝑸(𝜙𝛽 ) ∗ C
)

∶ 
]

, (45b)

and

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 + 𝑺 ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) −

1
2
𝑬e (𝑬 , 𝜙𝛽

)

∶
(

𝜕𝜙𝛽𝑸(𝜙𝛽 ) ∗ C
)

∶ 𝑬e (𝑬 , 𝜙𝛽
)

−

−1
2
𝓁2

(

(

𝜕𝜙𝛽𝑸(𝜙𝛽 ) ∗ C
)

∶ 
)

⋮ − 𝜕𝜙𝛽 𝑔(𝜙𝛽 , 𝜃) . (45c)

3.3.4. Phase boundaries between cubic phases
In the case of phase boundaries between different cubic phases the gradient length scale tensor 𝜦 is isotropic on both sides of

the interface, even though not necessarily constant across the interface, i.e., 𝜦 = 𝓁(𝜙𝛽 )2𝑰 . This allows us to reduce Eqs. (34), (31)
and (40) to the following form

𝑺 − div
[

𝓁(𝜙𝛽 )2 C(𝜙𝛽 ) ∶ grad
(

C−1(𝜙𝛽 ) ∶ 𝑺
)]

= 𝑺t + div
(

𝓁(𝜙𝛽 )2 C(𝜙𝛽 ) ∶ grad𝑬in(𝜙𝛽 )
)

, (46a)

with

𝑺t
(

𝑬 ,  , 𝜙𝛽
)

= C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

− div
(

𝓁(𝜙𝛽 )2 C(𝜙𝛽 ) ∶ 
)

, (46b)

and

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 + 𝑺 ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) +

1
2
𝑬e (𝑬 , 𝜙𝛽

)

∶ 𝜕𝜙𝛽C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

− 𝓁(𝜙𝛽 )𝜕𝜙𝛽𝓁(𝜙𝛽 )
(

C(𝜙𝛽 ) ∶ 
)

⋮ −

−
𝓁(𝜙𝛽 )2

2

(

𝜕𝜙𝛽C(𝜙𝛽 ) ∶ 
)

⋮ − 𝜌𝜕𝜙𝛽𝜓b(𝜙𝛽 , 𝜃) − 𝜕𝜙𝛽 𝑔(𝜙𝛽 , 𝜃) . (46c)

4. Examples

To demonstrate the key properties of the above model, numerical simulations using the finite element method are performed
using the commercial software ‘‘COMSOL Multiphysics’’.2 A uniform mesh with quadratic,3 quadrilateral elements is used for the
domain discretization. The element size is 0.2 nm. Time stepping is performed using the BDF method. Based on the assumptions of
the small perturbation hypothesis4 (Maugin, 1992), we apply traction boundary conditions to the undeformed geometry whenever
required. We assume elastostatics with an isotropic stiffness tensor C. Material parameters have been chosen to represent 𝛼-iron
with the values of the elastic constants, 𝐸 = 200 GPa, 𝜈 = 0.29, and the Burger’s vector 𝑏 = 0.285 nm.

2 https://www.comsol.com/.
3 Independent of the chosen shape functions, Comsol does not provide third spatial derivatives of the degrees of freedom. Therefore, in order to obtain

the second derivative of strain (third spatial derivative of the displacement), the ‘‘Distributed ODE’’ feature is used in order to introduce additional degrees of
freedom, corresponding to the second spatial derivatives of the displacement. For this ‘‘Distributed ODE’’ linear shape functions are employed.

4 Both the displacement 𝒖 as well as the displacement gradient are considered to be small, i.e., |𝒖|≪ 𝐿 and ‖ grad 𝒖‖≪ 1.
6
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Table 1
Model parameters used for the numerical example in Section 4.2.
Parameter name Symbol Value

Young’s modulus 𝐸 200 GPa
Poisson’s ratio 𝜈 0.29
Burger’s vector 𝑏 0.285 nm

Coefficient 𝑎 2.98
Coefficient 𝐴 1.155 × 108 J/m3

Coefficient 𝐵 −3.43 × 107 J/m3

Coefficient 𝐶 −2.78 × 108 J/m3

Mobility 𝑀 2 m3∕Js
Gradient coefficient 𝛼 5 × 10−11 N

4.1. Regularization in the dislocation core

As shown in Section 3.3.1, the present model reduces to the set of equations proposed by Po et al. (2018) in the homogeneous
ulk phase. Here, we apply this formulation to a single edge dislocation in an infinite elastic medium: Fig. 1 shows the shear
tress component 𝑆12 in the plane perpendicular of this dislocation with and without regularization (𝓁 = 2 Å). In the ‘‘classical’’

case without regularization, the stress in the dislocation core is singular, whereas it is well defined and finite for the regularized
solution, in analogy to what one would expect from a real atomistic configuration.

4.2. Effect of the regularization on the interaction of dislocations with a moving interface

This examples demonstrates the interaction of dislocations with a moving interface between phase variant 1 (indicated by the
subscript ‘‘V1’’) and variant 2 (indicated by the subscript ‘‘V2’’). The phase mesostructure is described by one single order parameter
𝜙. The only difference between the two variants is with respect to the eigenstrain induced by the phase transformation. This inelastic
strain is given as a function of the order parameter by

𝑬in(𝜙) =

{

𝑬in
V1 𝜑(𝜙) if 𝜙 ⩾ 0 ,

𝑬in
V2 𝜑(𝜙) if 𝜙 < 0

, (47)

here 𝑬in
V1 and 𝑬in

V2 are the eigenstrains of the phases V1 and V2, respectively,

𝑬in
V1 =

(

0 0.076
0.076 0

)

, 𝑬in
V2 =

(

0 −0.076
−0.076 0

)

. (48)

𝜑(𝜙) is a polynomial chosen in accordance with Levitas and Preston (2002)

𝜑(𝜙) = 𝑎
2
𝜙2 + (3 − 𝑎)𝜙4 + 1

2
(𝑎 − 4)𝜙6 . (49)

The symmetric bulk chemical free energy takes the following form

𝜌𝜓b(𝜙) = 𝐴𝜙6 + 𝐵𝜙4 + 𝐶𝜙2 , (50)

and the interface energy density is assumed as

𝜌𝜓i (grad𝜙) =
𝛼
2
‖ grad𝜙‖2. (51)

For this specific case, the resulting set of partial differential Eqs. (18) and (46a) can be further simplified to

div𝑺t = 𝟎 , (52a)

𝑺 − 𝓁2𝛥𝑺 = 𝑺t + 𝓁2 C ∶ 𝛥𝑬in(𝜙𝛽 ) , (52b)
with

𝑺t
(

𝑬 ,  , 𝜙
)

= C ∶
(

𝑬 − 𝑬in(𝜙𝛽 )
)

− 𝓁2 C ∶ div , (52c)
and

𝑀−1𝜙̇ = 𝛼𝛥𝜙 + 𝑺 ∶ 𝜕𝜙𝑬in(𝜙𝛽 ) − 𝜌𝜕𝜙𝜓b(𝜙) . (52d)

These equations are solved for the displacement field 𝒖, the order parameter 𝜙 and the true stress 𝑺. All parameters and coefficients
occurring in the above equations are summarized in Table 1. The resulting interface energy, computed for a stationary flat interface,
is 𝛾 = 0.22 J/m2. The timescale in the simulation is controlled by the mobility constant 𝑀 . Since the simulation time can be
arbitrarily re-scaled using the mobility, in our simulations we treat it as dimensionless pseudo time.

The following scenario considers an initially flat interface between variants V1 and V2, and a periodic, immobile dislocation
7

structure with a dislocation spacing of 10 nm within variant 2. For a pictorial representation, see Fig. 2(a). The structure is assumed
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Fig. 2. Model problem with initially flat phase boundary driven by pure shear loading towards a periodic arrangement of dislocations.

Fig. 3. Propagation of the interface. The labeled lined correspond to the center of the interface at the pseudo-times (in μs) denoted by the corresponding labels.
(a) 𝓁 = 0.6 Å: The interface is arrested at the dislocation array. (b) 𝓁 = 1.9 Å: The interface sweeps over the dislocation array.

to be infinite in vertical direction, allowing us to reduce the simulation domain to the dashed 40 nm wide and 10 nm high box in
Fig. 2(a) with periodic boundary conditions in vertical direction. The domain is loaded under pure shear conditions with an in-plane
shear stress of 85 MPa, under which V1 is energetically more favorable, i.e., the interface will move to the right.

Simulations are carried out using different regularization lengths 𝓁 (𝓁 = 0.6 Å and 𝓁 = 1.9 Å) resulting in different peak stresses
in the dislocation core (see Fig. 2(b)). Fig. 3 shows the positions of the V1–V2 interface for different points in simulation time. As
the interface approaches the dislocations, it bows out due to the interaction with the stress field of the dislocation core. The smaller
regularization length results in a larger stress magnitude in the dislocation core region, leading to an arrest of the interface (see
Fig. 3a). For the larger regularization length the stress in the vicinity of the dislocation is low enough in order to allow the interface
to pass over the dislocation as shown in Fig. 3b.

To analyze the temporal evolution in more detail Fig. 4 visualizes a number of different aspects of the investigated system. The
overall V1 phase content, i.e., the area containing phase variant V1 divided by the whole area, as a function of (pseudo) time is
shown in Fig. 4(a) for the two different regularization lengths. There, the most obvious characteristic is the arrest of the interface
8
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Fig. 4. Evolution of the phase content of variant 1 over pseudo-time.

for both values of 𝓁 happening simultaneously shortly after 𝑡 = 2μs. While the system with the smaller regularization length has
already reached a stationary state, the other system shows that the interface ‘‘detaches’’ from the dislocation and swipes the same
area per time as before, which shows in the same inclination of the respective line in Fig. 4(a).
9
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How does the rate of the V1 phase content evolution change shortly before and after the arresting of the interface took place? In
ig. 4(a) the peaks at 𝑡 ≈ 2 and ≈ 3μs indicate that the phase boundary is accelerating towards the dislocation until its velocity is
ignificantly reduced in the vicinity of the dislocation. The second peak shows that the interface effectively accelerates again after
assing the dislocation. This stage is followed by another dip (in between ≈ 3 and ≈ 3.5 μs) where the interface motion right of

the dislocation is again decelerated. This behaviors is also visualized in Fig. 4(c), which shows the interface position at equidistant
points in time.

Two different phenomena operate here, which can be understood from the change of sign of the shear stress field of an edge
dislocation as shown in Fig. 2(a). Recall that the inelastic strain of the interface is governed only by the shear components of the
strain tensor. Once the phase boundary is getting close enough to interact with the dislocation, the upper and lower sections of phase
V2 are in the regions 3/6 of the dislocation (compare Fig. 2(a)). The driving force is effectively directed in positive 𝑥-direction and
auses the acceleration. The central regions of the phase boundary, is located in region 4 of the dislocation stress field and therefore
xperiences a net driving force that is directed in opposite direction. This interplay between the directions of the two driving forces is
lso responsible for the curvature of the interface. Once the interface has passed the dislocation, the central regions of the interface
xperiences a very large driving force in positive direction (region 1 of the dislocation). The top and bottom sections of the interface,
owever, are located in regions with negative driving force 2/6. When the interface moves further towards the right, the magnitude
f the driving force from the dislocation acting in Section 1 decreases as 1∕𝑟 and this region of the interface decelerates. At the same
ime, the driving force acting on the top and bottom of the interface increases only slightly, explaining the second dip in Fig. 4(b)
round 𝑡 = 3...3.75μs. At a sufficient distance from the dislocation the top and bottom parts of the interface accelerate, which leads
o a decrease in curvature of the interface.

This is further shown in Figs. 4(d) and 4(e), which relate the motion of the curved interface to the motion of a flat interface for
he case without a dislocation structure (indicated by the dotted line).

. Summary

In this paper we developed a framework for coupling a phase-field description of planar defects such as phase or twin-boundaries
ith a discrete representation of dislocations within (anisotropic) first-strain-gradient elasticity. Its main features and advantages

n contrast to phase-field within classical elasticity are:

• Non-singular stresses at the dislocation core that can be easily calibrated to match molecular statics predictions using the
approach of Admal et al. (2017).

• Non-singular driving forces for the evolution of the phase-field evolution in the presence of dislocation. This ensures a mesh-
independent numerical solution and is a necessary condition for modeling the interaction of dislocations with interfaces such
as phase-, grain- or twin-boundaries.

We have shown that in order to ensure regularized driving forces in the dislocation core, a Helmholtz-type elastic free energy
hat is quadratic in the gradient of the total rather than the elastic strain must be used.

We implemented the proposed framework in the Comsol Multiphics Modeling Software and demonstrated its feasibility and basic
roperties based on a number of examples. Coupled to a dislocation-dynamics code, we expect this phase-field framework to be a
aluable tool for understanding microstructure-evolution on a small scale.
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Fig. A.5. The maximum shear stress in the dislocation core as a function of the dislocation ‘‘thickness’’.

Appendix. Energy that is quadratic in e ( , 𝝓𝜷
)

Starting with a setup identical to Section 3.2 but for the Helmholtz-type elastic free energy

𝜌𝜓e
(

𝑬 ,  , 𝜙𝛽 , 𝜃
)

= 1
2
𝑬e (𝑬 , 𝜙𝛽

)

∶ C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

+ 1
2
(

C(𝜙𝛽 ) ∶ e ( , 𝜙𝛽
)

⋅𝜦(𝜙𝛽 )
)

⋮e ( , 𝜙𝛽
)

, (A.1)

we find

𝑺 = C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

= C(𝜙𝛽 ) ∶
(

𝑬 − 𝑬in(𝜙𝛽 )
)

, (A.2)

 = C(𝜙𝛽 ) ∶ e ( , 𝜙𝛽
)

⋅𝜦(𝜙𝛽 ) , (A.3)

𝝃𝛽 = 𝛼 grad𝜙𝛽 −  ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) , (A.4)

and once again combining the first two equations

 = C(𝜙𝛽 ) ∶ grad
(

C−1(𝜙𝛽 ) ∶ 𝑺
)

⋅𝜦(𝜙𝛽 ) . (A.5)

From Eq. (17) we find the constitutive equation for the total stress 𝑺t

𝑺t
(

𝑬 ,  , 𝜙𝛽
)

= C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

− div
[

C(𝜙𝛽 ) ∶
(

 − grad𝑬in(𝜙𝛽 )
)

⋅𝜦(𝜙𝛽 )
]

(A.6)

and the equation to determine true stress 𝑺 from the total stress 𝑺t

𝑺 − div
[

C(𝜙𝛽 ) ∶ grad
(

C−1(𝜙𝛽 ) ∶ 𝑺
)

⋅𝜦(𝜙𝛽 )
]

= 𝑺t . (A.7)

The evolution equation for the order parameter obtained using the same procedure as in Section 3.2 is

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 + div
[

 ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 )

]

− 𝜌𝜕𝜙𝛽𝜓 . (A.8)

The divergence on the right hand side of (A.8) is easily evaluated:

div
[

 ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 )

]

= −div
[

 ∶ 𝜕𝜙𝛽𝑬
e (𝑬 , 𝜙𝛽

)

]

= −div  ∶ 𝜕𝜙𝛽𝑬
e (𝑬 , 𝜙𝛽

)

−  ⋮ 𝜕𝜙𝛽
e ( , 𝜙𝛽

)

= 𝑺t ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) − 𝑺 ∶ 𝜕𝜙𝛽𝑬

e (𝑬 , 𝜙𝛽
)

−  ⋮ 𝜕𝜙𝛽
e ( , 𝜙𝛽

)

= 𝑺t ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) + 𝜌𝜕𝜙𝛽𝜓 − 1

2
𝑬e (𝑬 , 𝜙𝛽

)

∶ 𝜕𝜙𝛽C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

−

1
2

(

C(𝜙𝛽 ) ∶ e ( , 𝜙𝛽
)

⋅ 𝜕𝜙𝛽𝜦(𝜙𝛽 )
)

⋮e ( , 𝜙𝛽
)

−

1
2

(

𝜕𝜙𝛽C(𝜙𝛽 ) ∶ e ( , 𝜙𝛽
)

⋅𝜦(𝜙𝛽 )
)

⋮e ( , 𝜙𝛽
)

Finally, we find the expression

𝑀−1𝜙̇𝛽 = 𝛼𝛥𝜙𝛽 + 𝑺t ∶ 𝜕𝜙𝛽𝑬
in(𝜙𝛽 ) −

1
2
𝑬e (𝑬 , 𝜙𝛽

)

∶ 𝜕𝜙𝛽C(𝜙𝛽 ) ∶ 𝑬e (𝑬 , 𝜙𝛽
)

−

1
2

(

C(𝜙𝛽 ) ∶ e ( , 𝜙𝛽
)

⋅ 𝜕𝜙𝛽𝜦(𝜙𝛽 )
)

⋮e ( , 𝜙𝛽
)

− 1
2

(

𝜕𝜙𝛽C(𝜙𝛽 ) ∶ e ( , 𝜙𝛽
)

⋅𝜦(𝜙𝛽 )
)

⋮e ( , 𝜙𝛽
)

−

𝜌𝜕𝜙𝛽𝜓b(𝜙𝛽 , 𝜃) − 𝜕𝜙𝛽 𝑔(𝜙𝛽 , 𝜃) . (A.9)

where the total stress 𝑺t appears in the driving force. In general, this stress cannot be assumed to be bounded in the dislocation-
11

core. This is illustrated in Fig. A.5 that shows the maximum shear stress in the dislocation core for different ‘‘thicknesses’’ of the
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dislocation, i.e., different discretizations. While the true stress 𝑆12 does not change noticeably once the discretization is sufficiently
ine, the total stress 𝑆t12 keeps increasing with decreasing thickness of the dislocation.

eferences

dmal, N.C., Marian, J., Po, G., 2017. The atomistic representation of first strain-gradient elastic tensors. J. Mech. Phys. Solids 99, 93–115. http://dx.doi.org/
10.1016/j.jmps.2016.11.005.

ai, W., Arsenlis, A., Weinberger, C.R., Bulatov, V.V., 2006. A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54, 561–587. http:
//dx.doi.org/10.1016/j.jmps.2005.09.005.

el Piero, G., 2009. On the method of virtual power in continuum mechanics. J. Mech. Mater. Struct. 4, 281–292. http://dx.doi.org/10.2140/jomms.2009.4.281.
ermain, P., 1973. The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575. http://dx.doi.org/10.1137/

0125053.
urtin, M., 1996. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192.
azar, M., Maugin, G.A., Aifantis, E.C., 2005. On dislocations in a special class of generalized elasticity. Phys. Status Solidi b 242, 2365–2390. http:

//dx.doi.org/10.1002/pssb.200540078.
azar, M., Maugin, G.A., Aifantis, E.C., 2006. Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817. http://dx.doi.org/10.1016/j.

ijsolstr.2005.07.005.
azar, M., Po, G., 2015. The non-singular Green tensor of Mindlin’s anisotropic gradient elasticity with separable weak non-locality. Phys. Lett. A 379, 1538–1543.

http://dx.doi.org/10.1016/j.physleta.2015.03.027.
evitas, V.I., Preston, D.L., 2002. Three-dimensional landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase

transformations and stress space analysis. Phys. Rev. B 66, 134207. http://dx.doi.org/10.1103/PhysRevB.66.134207.
othe, J., 1992. Dislocations in continuous elastic media. In: Indenbom, V.L., Lothe, J. (Eds.), Elastic Strain Fields and Dislocation Mobility. In: Modern Problems

in Condensed Matter Sciences, 31, Elsevier, pp. 175–235. http://dx.doi.org/10.1016/B978-0-444-88773-3.50008-X.
augin, G., 1980. The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mech. 35, 1–70.
augin, G., 1992. The Thermomechanics of Plasticity and Fracture. Cambridge University Press.
indlin, R., 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78.
abarro, F.R.N., 1947. Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256. http://dx.doi.org/10.1088/0959-5309/59/2/309.
eierls, R., 1940. The size of a dislocation. Proc. Phys. Soc. 52, 34. http://dx.doi.org/10.1088/0959-5309/52/1/305.
o, G., Lazar, M., Admal, N.C., Ghoniem, N., 2018. A non-singular theory of dislocations in anisotropic crystals. Int. J. Plast. 103, 1–22. http://dx.doi.org/10.

1016/j.ijplas.2017.10.003.
12

http://dx.doi.org/10.1016/j.jmps.2016.11.005
http://dx.doi.org/10.1016/j.jmps.2016.11.005
http://dx.doi.org/10.1016/j.jmps.2016.11.005
http://dx.doi.org/10.1016/j.jmps.2005.09.005
http://dx.doi.org/10.1016/j.jmps.2005.09.005
http://dx.doi.org/10.1016/j.jmps.2005.09.005
http://dx.doi.org/10.2140/jomms.2009.4.281
http://dx.doi.org/10.1137/0125053
http://dx.doi.org/10.1137/0125053
http://dx.doi.org/10.1137/0125053
http://refhub.elsevier.com/S0022-5096(20)30439-7/sb5
http://dx.doi.org/10.1002/pssb.200540078
http://dx.doi.org/10.1002/pssb.200540078
http://dx.doi.org/10.1002/pssb.200540078
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.005
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.005
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.005
http://dx.doi.org/10.1016/j.physleta.2015.03.027
http://dx.doi.org/10.1103/PhysRevB.66.134207
http://dx.doi.org/10.1016/B978-0-444-88773-3.50008-X
http://refhub.elsevier.com/S0022-5096(20)30439-7/sb11
http://refhub.elsevier.com/S0022-5096(20)30439-7/sb12
http://refhub.elsevier.com/S0022-5096(20)30439-7/sb13
http://dx.doi.org/10.1088/0959-5309/59/2/309
http://dx.doi.org/10.1088/0959-5309/52/1/305
http://dx.doi.org/10.1016/j.ijplas.2017.10.003
http://dx.doi.org/10.1016/j.ijplas.2017.10.003
http://dx.doi.org/10.1016/j.ijplas.2017.10.003

	A model for the interaction of dislocations with planar defects based on Allen–Cahn type microstructure evolution coupled to strain gradient elasticity
	Introduction
	Balance equations and boundary conditions
	Constitutive equations
	Laws of state
	Free energy and dissipation potential
	Formulation for specific cases
	Homogeneous bulk material
	Boundaries between grains without inelastic strain
	Twin boundaries and boundaries between grains with inelastic strain
	Phase boundaries between cubic phases


	Examples
	Regularization in the dislocation core
	Effect of the regularization on the interaction of dislocations with a moving interface

	Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Energy that is quadratic in Ye(Y,φβ)
	References


