Hauptseite > Publikationsdatenbank > An 18‐year climatology of directional stratospheric gravity wave momentum flux from 3‐D satellite observations > print |
001 | 887975 | ||
005 | 20210130010717.0 | ||
024 | 7 | _ | |a 10.1029/2020GL089557 |2 doi |
024 | 7 | _ | |a 0094-8276 |2 ISSN |
024 | 7 | _ | |a 1944-8007 |2 ISSN |
024 | 7 | _ | |a 2128/26234 |2 Handle |
024 | 7 | _ | |a WOS:000595819700077 |2 WOS |
037 | _ | _ | |a FZJ-2020-04561 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Hindley, N. P. |0 0000-0003-4377-2038 |b 0 |e Corresponding author |
245 | _ | _ | |a An 18‐year climatology of directional stratospheric gravity wave momentum flux from 3‐D satellite observations |
260 | _ | _ | |a Hoboken, NJ |c 2020 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1605800373_32252 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Atmospheric gravity waves (GWs) are key drivers of the atmospheric circulation, but their representation in general circulation models (GCMs) is challenging, leading to significant biases in middle atmospheric circulations. Unresolved GW momentum transport in GCMs must be parameterized, but global directional GW observations are needed to constrain this. Here we present an 18‐year climatology of directional stratospheric GW momentum flux (GWMF) from global AIRS/Aqua 3‐D satellite observations during 2002 to 2019. Striking hemispheric asymmetries are found at high latitudes, including dramatic reductions and reversals of GWMF during sudden stratospheric warmings. During Southern Hemisphere winter, a lateral convergence of GWMF toward 60°S is found that has no Northern Hemisphere counterpart. In the tropics, we find that zonal GWMF in AIRS measurements is strongly modulated by the semiannual oscillation (SAO) but not the quasi‐biennial oscillation (QBO). Our results provide guidance for future GW parameterizations needed to resolve long‐standing biases in GCMs. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Wright, C. J. |0 0000-0003-2496-953X |b 1 |
700 | 1 | _ | |a Hoffmann, L. |0 P:(DE-Juel1)129125 |b 2 |
700 | 1 | _ | |a Moffat‐Griffin, T. |0 0000-0002-9670-6715 |b 3 |
700 | 1 | _ | |a Mitchell, N. J. |0 0000-0003-1149-8484 |b 4 |
773 | _ | _ | |a 10.1029/2020GL089557 |0 PERI:(DE-600)2021599-X |n 22 |p e2020GL089557 |t Geophysical research letters |v 47 |y 2020 |x 1944-8007 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/887975/files/hindley20.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:887975 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129125 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-04 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-09-04 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-09-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b GEOPHYS RES LETT : 2018 |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|