000888029 001__ 888029
000888029 005__ 20210130010755.0
000888029 0247_ $$2doi$$a10.7554/eLife.60673
000888029 0247_ $$2Handle$$a2128/26237
000888029 0247_ $$2altmetric$$aaltmetric:94483694
000888029 0247_ $$2pmid$$apmid:33146610
000888029 0247_ $$2WOS$$aWOS:000592792400001
000888029 037__ $$aFZJ-2020-04607
000888029 082__ $$a600
000888029 1001_ $$00000-0002-0190-4103$$aPaquola, Casey$$b0$$eCorresponding author
000888029 245__ $$aConvergence of cortical types and functional motifs in the human mesiotemporal lobe
000888029 260__ $$aCambridge$$beLife Sciences Publications$$c2020
000888029 3367_ $$2DRIVER$$aarticle
000888029 3367_ $$2DataCite$$aOutput Types/Journal article
000888029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605801149_29122
000888029 3367_ $$2BibTeX$$aARTICLE
000888029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888029 3367_ $$00$$2EndNote$$aJournal Article
000888029 520__ $$aThe mesiotemporal lobe (MTL) is implicated in many cognitive processes, is compromised in numerous brain disorders, and exhibits a gradual cytoarchitectural transition from six-layered parahippocampal isocortex to three-layered hippocampal allocortex. Leveraging an ultra-high-resolution histological reconstruction of a human brain, our study showed that the dominant axis of MTL cytoarchitectural differentiation follows the iso-to-allocortical transition and depth-specific variations in neuronal density. Projecting the histology-derived MTL model to in-vivo functional MRI, we furthermore determined how its cytoarchitecture underpins its intrinsic effective connectivity and association to large-scale networks. Here, the cytoarchitectural gradient was found to underpin intrinsic effective connectivity of the MTL, but patterns differed along the anterior-posterior axis. Moreover, while the iso-to-allocortical gradient parametrically represented the multiple-demand relative to task-negative networks, anterior-posterior gradients represented transmodal versus unimodal networks. Our findings establish that the combination of micro- and macrostructural features allow the MTL to represent dominant motifs of whole-brain functional organisation.
000888029 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000888029 588__ $$aDataset connected to CrossRef
000888029 7001_ $$0P:(DE-HGF)0$$aBenkarim, Oualid$$b1
000888029 7001_ $$0P:(DE-HGF)0$$aDeKraker, Jordan$$b2
000888029 7001_ $$00000-0001-5701-1307$$aLarivière, Sara$$b3
000888029 7001_ $$00000-0002-8011-2226$$aFrässle, Stefan$$b4
000888029 7001_ $$0P:(DE-HGF)0$$aRoyer, Jessica$$b5
000888029 7001_ $$0P:(DE-HGF)0$$aTavakol, Shahin$$b6
000888029 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie$$b7
000888029 7001_ $$0P:(DE-HGF)0$$aBernasconi, Andrea$$b8
000888029 7001_ $$0P:(DE-HGF)0$$aBernasconi, Neda$$b9
000888029 7001_ $$0P:(DE-HGF)0$$aKhan, Ali$$b10
000888029 7001_ $$0P:(DE-HGF)0$$aEvans, Alan C$$b11
000888029 7001_ $$00000-0002-0779-9439$$aRazi, Adeel$$b12
000888029 7001_ $$0P:(DE-HGF)0$$aSmallwood, Jonathan$$b13
000888029 7001_ $$00000-0002-9536-7862$$aBernhardt, Boris C$$b14
000888029 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.60673$$gVol. 9, p. e60673$$pe60673$$teLife$$v9$$x2050-084X$$y2020
000888029 8564_ $$uhttps://juser.fz-juelich.de/record/888029/files/elife-60673-v2.pdf$$yOpenAccess
000888029 909CO $$ooai:juser.fz-juelich.de:888029$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b7$$kFZJ
000888029 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000888029 9141_ $$y2020
000888029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2018$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-08
000888029 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888029 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888029 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2018$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-08
000888029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-08
000888029 920__ $$lyes
000888029 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000888029 980__ $$ajournal
000888029 980__ $$aVDB
000888029 980__ $$aUNRESTRICTED
000888029 980__ $$aI:(DE-Juel1)INM-7-20090406
000888029 9801_ $$aFullTexts