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a b s t r a c t 

Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often 

self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor par- 

ticular modes of brain function, mechanisms that describe transitions between distinct functional states remain 

poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints 

imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we 

capitalized on manifold learning techniques that identify low dimensional representations of structural connec- 

tome organization and we decomposed neurophysiological activity into distinct functional states and their tran- 

sition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions 

anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology 

analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and 

adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between trans- 

modal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings 

establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct 

modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of 

human cognition. 
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. Introduction 

A core assumption of neuroscience is that brain structure governs

ngoing function ( Batista-García-Ramó and Fernández-Verdecia, 2018 ;

aum et al., 2020 ; Becker et al., 2018 ; Ciric et al., 2017 ;

ermundstad et al., 2013 ; Honey et al., 2009 ; Mi ŝ ic et al., 2016 ;

ark and Friston, 2013 ; Rubinov et al., 2009 ; Snyder and Bauer, 2019 ;

uárez et al., 2020 ; Vázquez-Rodríguez et al., 2019 ; Wang et al., 2019 ,

015 ). However, at the heart of this question is a puzzle: Brain struc-

ure remains relatively constant across time, yet the neural hardware

ltimately supports the flexible manner that an organism alters its reper-

oire of responses in line with changing external and internal demands.
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n both humans and non-human primates, links between brain structure

nd specific cognitive functions have been well established in a station-

ry manner ( Han et al., 2009 ; Mi ŝ ic et al., 2016 ; Wang et al., 2019 ). Al-

hough these studies highlight links between specific neural patterns and

articular aspects of cognition ( Honey et al., 2009 ; Mi ŝ ic et al., 2016 ;

ang et al., 2015 ), such analyses are not well suited to understanding

ow the brain flexibly changes between different modes of operation

 Allen et al., 2012 ; Bertolero et al., 2015 ; Friston et al., 2003 ; Kucyi et al.,

018 ; Taghia et al., 2018 ). At the same time, contemporary neuroscience

as begun to recognize that global features of the connectome are also

mportant in how structure gives rise to function. Such views suggest

hat systematic transitions across the cortex from sensorimotor regions
C. Bernhardt). 
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o transmodal association areas may support increasingly abstract ele-

ents of cognition ( Margulies et al., 2016 ; Mesulam, 1998 ). Moreover,

lthough these transmodal regions are spatially distributed, they are

lso strongly interconnected, showing a rich-club architecture that im-

lies a role in the control of more integrated cognitive states ( Avena-

oenigsberger et al., 2019 , 2018 ; Griffa and van den Heuvel, 2018 ;

i ŝ ic et al., 2016 ; van den Heuvel et al., 2012 ). In this study, we explore

he hypothesis that specific features of cortical structural connectome or-

anization support the transitions that brain makes between naturally

ccurring neural states. 

Recent advances in techniques for measuring brain organization and

unction in vivo , such as diffusion magnetic resonance imaging (dMRI)

nd functional MRI (fMRI), have put systems neuroscience in an un-

recedented position to understand features of brain organization that

upport flexible transitions between different modes of neural opera-

ion ( Allen et al., 2012 ; Bertolero et al., 2015 ; Damaraju et al., 2014 ;

riston et al., 2003 ; Kucyi et al., 2018 ; Lee et al., 2019 ; Park et al., 2019 ,

018b; Razi et al., 2017 ; Taghia et al., 2018 ; Vidaurre et al., 2017 ). Our

urrent study combines state-of-the-art manifold learning techniques to

dentify compact spatial representations of cortical structural connec-

ome organization, and we applied dynamic fMRI ananlysis to estimate

ransient functional brain states ( Margulies et al., 2016 ; Vidaurre et al.,

017 ). In the structural domain, we build on work capturing topological

rganization of the cortex in a low dimensional manifold space, which

as recently provided novel insights into human cognition at macroscale

 Huntenburg et al., 2018 ; Margulies et al., 2016 ). Such techniques have

een widely adopted in resting-state fMRI (rs-fMRI) studies of specific

egions and the whole brain ( Hong et al., 2019 ; Larivière et al., 2019a ;

argulies et al., 2016 ; Vos de Wael et al., 2018 ). However, manifold

earning applications to dMRI tractography data have so far focused on

pecific areas ( Bajada et al., 2017 ; Cerliani et al., 2012 ), rather than

ddressing whole-brain connectivity. In the functional domain, we use

ynamic functional connectivity analysis to capture transient features

f brain function. Dynamic functional connectivity analysis has recently

rovided novel insights into large-scale brain organization ( Allen et al.,

012 ; Ashourvan et al., 2017 ; Chai et al., 2017 ; Damaraju et al., 2014 ;

hambhati et al., 2018 ; Razi et al., 2017 ), inter-individual differences

n cognitive functions ( Bassett et al., 2011 ; Bertolero et al., 2015 ;

raun et al., 2015 ; Chai et al., 2016 ; Kucyi et al., 2018 ; Park et al., 2019 ;

aghia et al., 2018 ; Vidaurre et al., 2017 ), and network perturbations

n prevalent brain disorders ( Damaraju et al., 2014 ; Khambhati et al.,

015 ; Lee et al., 2019 ; Park et al., 2018a , 2018b). One method that can

esolve functional dynamics is the Hidden Markov Model (HMM), a gen-

rative probabilistic framework that identifies time-varying brain states

nd associated connectivity profiles ( Vidaurre et al., 2017 ). Recent stud-

es have capitalized on HMMs to estimate the hierarchical organization

f the dynamic state space in rs-fMRI data and assessed associations to

ognitive phenotypes ( Vidaurre et al., 2017 ) and task-related brain ac-

ivations ( Vidaurre et al., 2016 ). Here, HMMs were used to characterize

rain states that occur at rest and to assess the correspondence between

hese patterns and those derived purely from structural connectomics.

n particular, we examined how these changes map onto both low di-

ensional cortical representations of macroscale features of the cortex.

e did not make a-priori predictions how structurally-defined low di-

ensional manifolds may relate to measures of functional dynamics, as

hole-brain gradients derived from dMRI tractography data have not

een systematically studied in humans nor integrated with HMM data.

o however further contextualize the structure-function relationships

dentified in our study, we examined topological properties of structural

etwork organization and assessed how these may implement different

ommunication mechanisms ( Avena-Koenigsberger et al., 2019 , 2018 ;

e Reus and van den Heuvel, 2013 ; Goñi et al., 2014 ; Griffa and van den

euvel, 2018 ; Liang et al., 2018 ; Shu et al., 2018 ; van den Heuvel et al.,
012 ; Zhao et al., 2017 ). These include the rich-club taxonomy, which

lassifies cortical organizations in terms of degree distributions into a

ensely interconnected rich-club core and a more locally connected pe-

iphery ( Griffa and van den Heuvel, 2018 ; van den Heuvel et al., 2012 ),

s well as network communication measures that can contrast more pas-

ive network diffusion mechanisms against routing strategies that pref-

rentially follow shortest paths ( Avena-Koenigsberger et al., 2019 , 2018 ;

oñi et al., 2014 ). 

Our study provided a low dimensional description of structural con-

ectome architecture and explored its association to transient functional

tates in the resting brain. We capitalized on high-definition dMRI and

s-fMRI data provided by the Human Connectome Project (HCP) repos-

tory ( Van Essen et al., 2013 ) and also assessed an independent locally

cquired datasets with similar imaging parameters. Foreshadowing our

esults, we found evidence that cortical structural connectivity is opti-

ized to allow for flexibility between states anchored in unimodal re-

ions (that are well described by local properties of these regions cap-

ured by a low dimensional representations of cortical structure) and

tates anchored by transmodal regions (which engage in efficient long-

ange communication between states). 

. Methods 

.1. Participants 

We assessed the minimally processed S900 release of the HCP

 Van Essen et al., 2013 ). Participants who did not complete full imaging

ata and who had family relationships were excluded, resulting in a total

f 326 participants (mean ± SD age = 28.56 ± 3.73 years; 55% female).

articipants were randomly divided into a Discovery and Replication co-

ort. The Discovery dataset (n = 163; age = 28.86 ± 3.78 years; 60%

emale) was used for constructing a framework of structure-functional

ynamic coupling and the Replication dataset (n = 163; age = 28.26 ±
.67 years; 51% female) was used for testing reproducibility. All MRI

ata used in this study were publicly available and anonymized. Par-

icipant recruitment procedures and informed consent forms, including

onsent to share de-identified data, were previously approved by the

ashington University Institutional Review Board as part of the HCP. 

We replicated our findings in an independent dataset from our local

ite (MICA-MTL, n = 47; age = 30.43 ± 6.83 years; 35% female). This

ataset was approved by the Institutional Review Board of Montreal

eurological Institute and Hospital and written and informed consent

as obtained from all participants. 

.2. MRI acquisition 

.2.1. HCP 

HCP participants were scanned using a Siemens Skyra 3T at Wash-

ngton University. The T1-weighted images were acquired using a

agnetization-prepared rapid gradient echo (MPRAGE) sequence (rep-

tition time (TR) = 2,400 ms; echo time (TE) = 2.14 ms; field of

iew (FOV) = 224 × 224 mm 

2 ; voxel size = 0.7 mm 

3 ; and number

f slices = 256). The T2-weighted structural data were obtained with

he T2-SPACE sequence, with an identical geometry as the T1-weighted

ata but different TR (3,200 ms) and TE (565 ms). The dMRI data

ere acquired with the spin-echo echo-planar imaging (EPI) sequence

TR = 5,520 ms; TE = 89.5 ms; FOV = 210 × 180 mm 

2 ; voxel size = 1.25

m 

3 ; b-value = three different shells i.e., 1,000, 2,000, and 3,000

/mm 

2 ; number of diffusion directions = 270; and number of b0 im-

ges = 18). The rs-fMRI data were collected using a gradient-echo EPI

equence (TR = 720 ms; TE = 33.1 ms; FOV = 208 × 180 mm 

2 ; voxel

ize = 2 mm 

3 ; number of slices = 72; and number of volumes = 1,200).
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uring the rs-fMRI scan, participants were instructed to keep their eyes

pen looking at a fixation cross. Two sessions of rs-fMRI data were ac-

uired; each of them contained data of left-to-right and right-to-left

hase-encoded directions, providing up to four time series per partic-

pant. 

.2.2. MICA-MTL 

The MICA-MTL imaging data were scanned using a Siemens Prisma

T scanner at the Montreal Neurological Institute and Hospital. Image

cquisition parameters were similar to the HCP dataset (T1-weighted:

R = 2,300 ms; TE = 3.14 ms; FOV = 256 × 180 mm 

2 ; voxel size = 0.8

m 

3 ; and number of slices = 320; dMRI: TR = 3,500 ms; TE = 64.4

s; FOV = 224 × 224 mm 

2 ; voxel size = 1.6 mm 

3 ; b-value = three

ifferent shells (200, 700, and 2,000 s/mm 

2 ); number of diffusion di-

ections = 140; and number of b0 images = 3; rs-fMRI: TR = 600 ms;

E = 30 ms; FOV = 240 × 240 mm 

2 ; voxel size = 3 mm 

3 ; number of

lices = 48; and number of volumes = 800). 

.3. Data preprocessing 

.3.1. HCP data 

HCP data underwent the initiative’s minimal preprocessing pipelines

 Glasser et al., 2013 ). In brief, structural MRI data underwent gradient

onlinearity and b0 distortion correction, followed by co-registration

etween the T1-weighted and T2-weighted data using a rigid-body

ransformation. Bias field correction was performed by capitalizing on

he inverse intensities from the T1- and T2-weighting. Processed data

ere nonlinearly registered to MNI152 space and the white and pial

urfaces were generated by following the boundaries between different

issues ( Dale et al., 1999 ; Fischl, 2012 ; Fischl et al., 1999b , 1999a ). The

hite and pial surfaces were averaged to generate a mid-thickness sur-

ace, which was used to generate the inflated surface. The spherical sur-

ace was registered to the Conte69 template with 164k vertices ( Van Es-

en et al., 2012 ) using MSMAll ( Glasser et al., 2016; Robinson et al.,

014 ) and downsampled to a 32k vertex mesh. The dMRI data under-

ent b0 intensity normalization, and EPI distortions were corrected by

everaging reversed phase-encoded directions. The dMRI data was also

orrected for eddy current distortions and head motion. The rs-fMRI

ata preprocessing involved corrections for EPI distortions and head

otion, and fMRI data were registered to the T1-weighted data and

ubsequently to MNI152 space. Magnetic field bias correction, skull re-

oval, and intensity normalization were performed. Noise components

ttributed to head movement, white matter, cardiac pulsation, arterial,

nd large vein related contributions were automatically removed using

IX ( Salimi-Khorshidi et al., 2014 ). The minimal preprocessing with FIX-

enoising pipeline of the HCP performs a high-pass filtering with a cutoff

f 2,000 s full width at half maximum ( Glasser et al., 2013 ). Prepro-

essed time series were mapped to standard grayordinate space, with a

ortical ribbon-constrained volume-to-surface mapping algorithm. The

otal mean of the time series of each left-to-right/right-to-left phase-

ncoded data was subtracted to adjust the discontinuity between the

wo datasets and they were concatenated to form a single time series

ata. 

.3.2. MICA-MTL 

MICA-MTL data were processed similarly as the HCP data. In brief,

1-weighted data were deobliqued, reoriented, skull stripped, and

ortical surfaces were generated using FreeSurfer ( Dale et al., 1999 ;

ischl, 2012 ; Fischl et al., 1999b , 1999a ). The dMRI data was processed

sing MRtrix ( Tournier et al., 2019 , 2012 ) including correction for sus-

eptibility distortions, head motion, and eddy currents. The rs-fMRI

ata were processed using AFNI and FSL ( Cox, 1996 ; Jenkinson et al.,

012 ). The first five volumes were discarded to allow for magnetic

eld saturation, followed by reorientation, motion and distortion correc-

ion, skull stripping, and nuisance variable removal using FIX ( Salimi-

horshidi et al., 2014 ). Functional time series were mapped to each
ndividual’s cortical surface using boundary-based registration and sub-

equently to the 32k vertex Conte69 template. 

.4. Structural connectome generation and manifold identification 

Structural connectomes were generated from preprocessed dMRI

ata using MRtrix ( Tournier et al., 2019 , 2012 ). Different tissue types

f cortical and subcortical grey matter, white matter, and cerebrospinal

uid were segmented using T1-weighted image for anatomical con-

trained tractography ( Smith et al., 2012 ). Multi-shell and multi-tissue

esponse functions were estimated ( Christiaens et al., 2015 ) and con-

trained spherical-deconvolution and intensity normalization were per-

ormed ( Jeurissen et al., 2014 ). The initial tractogram was generated

ith 40 million streamlines, with a maximum tract length of 250

nd a fractional anisotropy cutoff of 0.06. Spherical-deconvolution in-

ormed filtering of tractograms (SIFT2) was applied to reconstruct whole

rain streamlines weighted by cross-section multipliers ( Smith et al.,

015 ). To build a structural connectome, the reconstructed cross-section

treamlines were mapped onto the Schaefer atlas with 200 parcels

 Schaefer et al., 2018 ). Connectome data were log-transformed to re-

uce connectivity strength variance ( Fornito et al., 2016 ; Goñi et al.,

014 ). 

The principal eigenvectors explaining spatial shifts in the structural

onnectome, referred to as structural connectome gradients were esti-

ated using the BrainSpace toolbox ( https://github.com/MICA-MNI/

rainSpace ) ( Margulies et al., 2016 ; Vos de Wael et al., 2020 ). A cosine

imilarity matrix was constructed from the group averaged structural

onnectome to capture the similarity of connections among different

rain regions. We capitalized on diffusion map embedding, a non-linear

anifold learning algorithm, to identify low dimensional manifolds ( i.e.,

rincipal components) ( Cox, 1996 ). In this manifold, strongly intercon-

ected brain regions that have many and/or strong connections are

losely located, while regions with little and/or weak inter-connectivity

re farther apart. Diffusion map embedding algorithm is robust to noise

nd computationally efficient compared to other non-linear manifold

earners ( Tenenbaum et al., 2000 ; Von Luxburg, 2007 ). The algorithm

s controlled by two parameters 𝛼 and t, where 𝛼 controls the influence

f the density of sampling points on the manifold ( 𝛼 = 0, maximal in-

uence; 𝛼 = 1, no influence) and t controls the scale of eigenvalues of

he diffusion operator. We followed recommendations and fixed 𝛼 at

.5 and t at 0, a choice that retains the global relations between data

oints in the embedded space ( Hong et al., 2019 ; Margulies et al., 2016 ;

aquola et al., 2019 ; Vos de Wael et al., 2018 ). 

.5. Dynamic functional connectivity analysis 

Dynamic functional connectivity analysis was performed using a

ultivariate autoregressive HMM approach, which models distinct brain

tates via a multivariate Gaussian distribution and which infers model

arameters via variational Bayes ( https://github.com/OHBA-analysis/

MM-MAR ) ( Vidaurre et al., 2017 ). The number of brain states was de-

ermined according to the following six steps: (1) For each participant,

e divided the functional time series into ten non-overlapping segments

nd (2) applied k-means clustering to 9/10 time series segments with k

anging from 2 to 20. (3) For each k, we calculated the ratio of between-

luster variance to total variance, and the optimal number of brain states

or the given time series was determined as the minimum value at which

he explained variance exceeded 90% of total variance ( Kodinariya and

akwana, 2013 ; Park et al., 2018b ). (4) We repeated steps 1–3 for a to-

al of 10 times with different time segments within a participant, and (5)

lso repeated steps 1–4 for all participants. (6) Finally, we determined

he optimal number of brain states for HMM training as the most fre-

uently observed number of k across time segments and participants. We

rained HMM using the concatenated time series across participants. To

itigate circularity ( Kriegeskorte et al., 2009 ), we used different time

https://github.com/MICA-MNI/BrainSpace
https://github.com/OHBA-analysis/HMM-MAR
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t  
egments for HMM training and brain state estimation. For each par-

icipant, we concatenated 50% of the time series from session 1 and

he other 50% from session 2. Then, we concatenated this reconstructed

ime series across all participants to train the HMM. The trained model

as applied to the rest of the time series to estimate distinct brain states.

MM estimates specific states, where a state k is characterized by a mul-

ivariate Gaussian distribution with a mean distribution of whole-brain

ctivity ( 𝜇k ) and covariance matrix ( Σk ) ( Vidaurre et al., 2018 , 2017).

pecifically, time series data x in the hidden state s at time t follows the

ultivariate Gaussian distribution N as follows: 

 𝑡 |𝑠 𝑡 = 𝑘 ∼ 𝑁 

(
𝜇𝑘 , Σ𝑘 

)
(1)

ere, 𝜇k is a vector of mean blood oxygen level-dependent (BOLD) acti-

ation, which is here referred to as functional mean patterns of activa-

ion (fMPA), and Σk is the covariance matrix when state k is active. In

ddition, HMM estimates transition probabilities between brain states

nd allows representing the frequency of transitions ( Vidaurre et al.,

018 , 2017). Meta-states, i.e., communities of functional states, were

stimated to simplify the transition structure ( Vidaurre et al., 2017 ), by

pplying the Louvain community detection algorithm ( Blondel et al.,

008 ) to the transition probability matrix. To avoid effects related to

andom HMM initialization, HMM training, estimating brain states, and

eta-state estimation were repeated 100 times. The most frequently ob-

erved meta-state structure across iterations was selected. 

.6. Association between functional dynamics and structural connectome 

rganization 

Structure-function coupling was first assessed by spatial associations

 i.e., linear product moment correlation coefficients) between structural

radients and differences in fMPA ( ΔfMPA) within and between meta-

tates. Specifically, we calculated ΔfMPA as the average of differences in

MPA between all possible pairs of transitions within or between meta-

tates: 

𝑓 𝑀𝑃 𝐴 { 𝑆→𝑇 } = 

1 
𝐴 

𝑁 ∑
𝑖 =1 

𝑀 ∑
𝑗=1 

𝑓 𝑀𝑃 𝐴 𝑆 𝑖 
− 𝑓 𝑀𝑃 𝐴 𝑇 𝑗 

(2)

ere, i and j are individual states within meta-states S and T; N and

 are the numbers of individual states in the meta-states; and A is

he number of possible pairs of state transitions ( i.e., transitions within

eta-state: 𝐴 = 𝑁 

𝐶 2 , transitions between meta-states: 𝐴 = 𝑁 ⋅𝑀). The

ignificance of the correlation was assessed using 1,000 spin tests, which

andomly rotate ΔfMPA and hence preserve the spatial autocorrelation

 Alexander-Bloch et al., 2018 ). A null distribution was constructed, and

he real correlation strength was deemed significant if it belonged to

he 5 th percentile. To evaluate whether the above structure-function as-

ociations were robust above and beyond inter-regional variations of

ortical morphology, we correlated ΔfMPA with MRI-derived cortical

hickness and folding measures (derived from FreeSurfer). In addition,

e controlled for cortical thickness and folding when correlating ΔfMPA

ith structural connectome gradients, to establish that structural gradi-

nts explain dynamic functional shifts above and beyond the effects of

ortical morphology. 

.7. Associations of functional dynamics with network topology 

To assess structural network topology underpinnings of distinct func-

ional dynamic states, we stratified ΔfMPA in terms of rich-club tax-

nomy, a topological measure sensitive to core-periphery organization

f the network ( Griffa and van den Heuvel, 2018 ; van den Heuvel

t al., 2012 ). The rich-club is a set of highly interconnected high-

egree nodes. It has been shown to play an important role in infor-

ation integration between different brain networks and aggregates
ost long-range connections of the human brain ( de Reus and van den

euvel, 2013 ; Griffa and van den Heuvel, 2018 ; Liang et al., 2018 ;

hu et al., 2018 ; van den Heuvel et al., 2012 ; Zhao et al., 2017 ). In

ontrast, peripheral nodes show shorter, more local connections and

erve in more specialized, segregated functions ( de Reus and van den

euvel, 2013 ; Griffa and van den Heuvel, 2018 ; Liang et al., 2018 ;

hu et al., 2018 ; van den Heuvel et al., 2012 ; Zhao et al., 2017 ). The

eighted rich-club coefficient 𝜑 

w (k) was calculated from the group rep-

esentative structural connectome, defined using a distance-dependent

hresholding ( Betzel et al., 2019 ), using the Brain Connectivity Toolbox

 https://sites.google.com/site/bctnet/ ) ( Rubinov and Sporns, 2010 ).

he 𝜑 

w (k) was calculated across different levels of degree (k) rang-

ng from 1 to the maximal degree and was normalized against 1,000

andomly rewired networks with similar degree distribution. Degree

evels in which (i) the normalized rich-club coefficient exceeded one

 i.e., 𝜑 

w 

norm 

(k) > 1) and (ii) where there were significant differences

etween real and randomized networks (p < 0.05, permutation test cor-

ected) were considered as the rich-club regime. The rich-club nodes

ere defined as nodes exceeding the k th degree level in the rich-club

egime (here, k = 28). Remaining nodes were classified into feeder nodes,

hich had more than 10% connections with rich-club nodes, and lo-

al nodes, which had less than 10% connections ( Hong et al., 2019 ).

he magnitude of ΔfMPA within and between meta-states was quanti-

ed according to the rich-club taxonomy and they were compared us-

ng two-sample t-tests across rich-club, feeder, and local nodes. Find-

ngs were corrected at a false discovery rate < 0.05 ( Benjamini and

ochberg, 1995 ). 

Structural connectivity distance provides an index of network hierar-

hy complementary to rich-club taxonomy, given the observation that

ackbone hubs often host longer-range connections to distributed tar-

ets than local nodes that mostly travel along short-range paths ( Avena-

oenigsberger et al., 2019 ; van den Heuvel et al., 2012 ). To assess the

elationship between functional dynamic transitions and structural con-

ectivity distance, we stratified ΔfMPA according to connectivity dis-

ance ( Larivière et al., 2019b ; Oligschläger et al., 2019 ). Connectivity

istance, thus, indicates a given brain area’s average geodesic distance

o its structurally connected regions ( Oligschläger et al., 2019 ). Geodesic

istance was defined as the shortest path connecting two points along

he cortical surface, following prior procedures ( Ecker et al., 2013 ;

ong et al., 2018 ; Margulies et al., 2016 ). It represents the physical dis-

ance between the two cortical points when travelling through the corti-

al sheet, and does not depend on network topology. The multiplication

etween the geodesic distance and the binarized structural connectome

as performed, and the row-wise mean was calculated to compute the

onnectivity distance ( Hong et al., 2019 ; Oligschläger et al., 2019 ). The

onnectivity distance was partitioned into 10 bins and the magnitude of

fMPA was quantified according to each bin. 

.8. Role of network communication 

In addition to the rich-club taxonomy and connectivity distance

easures, we leveraged network communication models that deter-

ine how a structural connectome can implement functional sig-

aling and information transfer ( Avena-Koenigsberger et al., 2019 ,

018 ; Goñi et al., 2014 ) to associate functional dynamics to models

f structurally-governed communication ( Avena-Koenigsberger et al.,

018 ; Goñi et al., 2014 ). The metrics of mean first-passage time and path

ength measuring network diffusivity ( Avena-Koenigsberger et al., 2018 )

ere calculated from the weighted structural connectivity matrix using

he Brain Connectivity Toolbox ( https://sites.google.com/site/bctnet/ )

 Rubinov and Sporns, 2010 ). Mean first-passage time quantifies the ex-

ected length of a random walk between two nodes, indicating a diffu-

ion mechanism ( Avena-Koenigsberger et al., 2018 ; Goñi et al., 2013 ).

ath length, on the other hand, is defined as the shortest weighted

ath between the source and target; nodes with low path lengths con-

ribute to globally efficient communication ( Avena-Koenigsberger et al.,

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
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018 ; Goñi et al., 2014 ; Rubinov and Sporns, 2010 ). To assess differ-

nces in communication mechanisms of the brain regions showing large

hanges in brain activity during meta-state transitions, we quantified

ean first-passage time and path length in the brain regions, which

howed a strong (top 5%) magnitude of ΔfMPA within and between

eta-states, and computed communication metrics on resultant subma-

rices. We repeated calculating mean first-passage time and path length

n the brain regions that showed the top 10, 15, and 20% magnitude

f ΔfMPA within and between meta-states to assess the consistency of

he findings. To confirm findings using alternative parameters, we ad-

itionally stratified changes in ΔfMPA with respect to search informa-

ion and path transitivity ( Avena-Koenigsberger et al., 2018 ; Goñi et al.,

014 ). Search information quantifies the amount of information needed

o access the path connecting from a source node to a target node

 Avena-Koenigsberger et al., 2018 ; Goñi et al., 2014 ). Similar to mean

rst-passage time, higher search information indicates the diffuse prop-

rty of the network by implying that it requires a large amount of in-

ormation to reach the target node through the shortest path ( Avena-

oenigsberger et al., 2018 ; Goñi et al., 2014 ). Path transitivity captures

he density of local detours along the given shortest path, indicating high

ath transitivity represents the existence of many closed loops along

he path enabling a signal to return to the shortest path after detouring

 Avena-Koenigsberger et al., 2018 ; Goñi et al., 2014 ). 

.9. Functional dynamic transitions in terms of cortical hierarchy 

Finally, we contextualized functional dynamic transitions within a

rior model of neural organization formulated in non-human primates

hat subdivides the cortex into four levels: idiotypic (level-1), unimodal

ssociation (level-2), heteromodal association (level-3), and paralimbic

level-4) cortices ( Mesulam, 1998 ). Hierarchical weights of the fMPA

atterns for each state were quantified with respect to Mesulam hier-

rchy for each brain state. The discretized fMPA was interpolated with

0 bins and the point that exhibited maximum fMPA value was selected

s the mean hierarchical level. For each hierarchical level, we calcu-

ated the following topological parameters and communication metrics:

i) the proportion of rich-club nodes (relative to all nodes on that hi-

rarchical level), (ii) the average connectivity distance, and (iii) ratio

etween signal diffusion to routing in terms of structurally-governed

ommunication. For diffusion/routing communication ratio, we calcu-

ated the ratio between mean first-passage time and path length. The

inear product moment correlation between the first structural gradi-

nt (sG1) and ΔfMPA and mean hierarchical level between all pairs of

rain states were computed. Then, the magnitude of structure-function

oupling ( i.e., correlation between sG1 and ΔfMPA) was quantified ac-

ording to the mean hierarchical level to assess the relationship between

ortical hierarchy and structure-functional dynamic coupling. 

.10. Sensitivity and reproducibility analyses 

a) Matrix thresholding. We repeated structural gradient estimation based

on structural connectomes with different levels of density (un-

thresholded, 25, 50, and 75% density). 

b) Spatial scale. To evaluate the impact of spatial scale, we repeated our

analyses across different granularities of the Schaefer atlas ( i.e., 100,

300, or 400 regions) ( Schaefer et al., 2018 ). 

c) Reproducibility in HCP. We assessed reproducibility by performing

the same analyses on the independent Replication subset from the

HCP. Structural gradients, functional brain states, and the correla-

tion between structural gradients and ΔfMPA as well as morpho-

logical associations were computed and compared to those in the

Discovery cohort. 

d) Reproducibility in another dataset. We furthermore replicated our find-
ings in a locally scanned cohort (MICA-MTL, n = 47). (  
. Results 

.1. Cortex-wide structural connectome gradients 

We computed whole brain structural connectomes from all partic-

pants, using an established parcellation scheme (See Supporting Infor-

ation for replication across partitioning schemes and spatial scales)

 Schaefer et al., 2018 ). Using non-linear dimensionality reduction tech-

iques, we derived structural connectome gradients ( Vos de Wael et al.,

020 ). The first two gradients (sG1, sG2) were selected, as these ex-

lained 44.5% of connectome variance and corresponded to the clearest

lbow in the scree plot ( Fig. 1 A). For additional information, the third

o fifth gradients (sG3, sG4, sG5) are shown in Fig. S1A but will not be

urther discussed. While sG1 differentiated a sensorimotor from a me-

ial prefrontal anchor, sG2 extended from the ventral to dorsal visual

ystems. Structural gradients were consistent across different levels of

ensity in structural connectomes, which showed mean product moment

orrelations across spatial maps of 0.95 with SD 0.03 (p < 0.001) (Fig.

1B). 

.2. Dynamic functional connectivity analysis 

Dynamic changes in functional states were estimated using an HMM

 Fig. 1 B). HMM provided the fMPA and associated connectivity matrix

or each brain state (Fig. S2A), as well as transition probabilities be-

ween states. Meta-states were estimated to simplify the transition struc-

ure ( Vidaurre et al., 2017 ) via Louvain community detection ( Fig. 1 C)

 Blondel et al., 2008 ). This approach identified two functional meta-

tates fM1 and fM2, each with distinct spatial activation and connec-

ivity patterns. fM1 showed high activation in sensorimotor and lat-

ral prefrontal regions while fM2 showed activations in default and

rontoparietal networks ( Fig. 1 D). Spatial correlations in activation pat-

erns between both meta-states were low (mean ± SD r = 0.24 ± 0.10),

hile states falling within each meta-state showed moderate to high

orrelations to one another (mean ± SD r = 0.32 ± 0.17 for fM1 and

 = 0.36 ± 0.19 for fM2). Directly comparing the top 1% connections

etween meta-states, fM1 had stronger connections in visual and so-

atosensory networks, and fM2 showed stronger connections in fron-

oparietal and default-mode networks (Table S1). Furthermore, the cor-

elation between fMPA of meta-states and meta-analysis maps of diverse

ognitive domains ( Margulies et al., 2016 ), derived using Neurosynth

 Yarkoni et al., 2011 ), revealed distinct cognitive term associations be-

ween meta-states; fM1 was characterized by ‘motor’ terms while fM2

elated to higher-order cognitive terms such as ‘autobiographical mem-

ry’ and ‘social cognition’ (Fig. S2B). Collectively, these findings support

hat fM1 reflects a low-level sensorimotor state whereas fM2 is more in-

olved in higher-order transmodal functions. 

.3. Structural connectome gradients relate to dynamic functional 

ransitions 

To assess structure-function correspondence, we computed product

oment correlations between structural connectome gradients sG1 and

G2 and dynamic activity changes ( ΔfMPA) within the two meta-states

M1 and fM2, and between them. Activity changes for all transitions

nvolving fM1 were correlated with sG1 but not sG2, with significance

etermined using non-parametric spin tests that adjust for shared spa-

ial autocorrelations ( Fig. 2 and Fig. S3) ( Alexander-Bloch et al., 2018 ;

os de Wael et al., 2020 ). Indeed, sG1 correlated with transitions within

M1 (r = -0.5778, p < 0.001), from fM1 to fM2 (r = 0.3827, p < 0.05),

nd from fM2 to fM1 (r = 0.4635, p < 0.005). Conversely, no signifi-

ant relationship was found in transitions within fM2 (r = 0.0758, p >

.4). Although sG2 by itself did not significantly correlate with these

ransitions, model fit ( i.e., adjusted R 

2 ) generally improved when incor-

orating both sG1 and sG2 into a common model via linear regression

 + 4.1% variance explained for transitions within fM1; + 2.4% from fM1
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Fig. 1. Structural gradients and dynamic functional connectome profiles. (A) Manifolds estimated from the structural connectome. Systematic dMRI fiber tracking 

generated a cortex-wide structural connectome, on which non-linear dimensionality reduction identified principal components describing connectivity variance. 

The first two components (sG1 and sG2) corresponded to the clearest elbow in the scree plot. (B) Dynamic functional analysis leveraged Hidden Markov Models 

(HMM) that decompose the time series into a set of states and their transition probabilities. (C) Transition probabilities were clustered using a community detection 

algorithm to identify functional meta-states (fM1 and fM2). Line widths represent transition probability strengths, thresholded at 0.2. (D) The functional mean 

patterns of activation (fMPA) for two meta-states (fM1, fM2) and their differences at the level of the whole brain and functional networks are shown in the upper 

row. Significant differences in fMPA between fM1 and fM2 are indicated with an asterisk. Corresponding connectivity matrices and differences in edges with top 

1% weights for the two meta-states are shown in the bottom row. Abbreviations : dATN, dorsal attention network; FPN, frontoparietal network; DMN, default-mode 

network; VN, visual network; LBN, limbic network; SMN, sensorimotor network; vATN, ventral attention network. 



B.-y. Park, R. Vos de Wael, C. Paquola et al. NeuroImage 224 (2021) 117429 

Fig. 2. Associations between structural gradients and functional dynamic transitions. (A) The ΔfMPA with respect to sG1 and sG2 were reported in the upper row. 

The color indicates the magnitude of ΔfMPA. The ΔfMPA for transitions within and between meta-states are reported in the bottom row. (B) The correlation between 

sG1 and ΔfMPA. Permutation-based correlation values across 1,000 spin tests are shown in the histogram, with the real correlation value indicated via a red line. 

(C) Linear fit of ΔfMPA using both sG1 and sG2, incorporated via linear regression model. 
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o fM2; + 27.1% from fM2 to fM1; and + 127.4% within fM2). For tran-

itions within fM1 and from fM2 to fM1, both sG1 and sG2 showed sig-

ificant contributions for model fitting (within fM1: p < 0.001/0.0035

or sG1/sG2; from fM2 to fM1: p < 0.001/ < 0.001). On the other hand,

nly sG1 showed significance for the transitions between fM1 to fM2 (p

 0.001/0.2059), and only sG2 showed significance for the transitions

ithin fM2 (p = 0.2859/0.0285). 

.4. Morphological structures are not relevant to functional dynamic 

ransitions 

To assess contributions of regional morphological variations, we also

orrelated MRI-derived measures of cortical thickness and folding to

fMPA. We observed weak and non-significant associations with corti-

al thickness ( Fig. 3 A). Although the association between cortical fold-

ng and activity changes within fM1 and from fM2 to fM1 reached signif-

cance, correlations were overall relatively weak ( Fig. 3 B). Importantly,

he correlations between structural gradients and ΔfMPA were robust

fter correcting gradient values for cortical thickness and folding, both

or the model based on sG1 only ( Fig. 3 C) and for the model based on

oth sG1 and sG2 ( Fig. 3 D), suggesting that structural connectome orga-

ization contains information about neural dynamics above and beyond

he information provided by local variation in cortical morphology. 

.5. Connectome topology analysis 

The above findings suggest a reasonably strong structure-function

orrespondence for functional transitions involving states anchored in

ensorimotor systems ( i.e., within fM1, from fM1 to fM2, and from fM2

o fM1). However, there was no comparable prediction for states that

re linked to more transmodal regions. These findings are broadly in

ine with previous findings showing stronger structure-function cou-

ling in unimodal than transmodal cortices ( Park and Friston, 2013 ;

ázquez-Rodríguez et al., 2019 ). To understand the underlying mecha-

ism of flexibility in more transmodal states, we next evaluated the rela-

ionship to network topology parameters describing long distance com-

unication between regions ( Avena-Koenigsberger et al., 2019 , 2018 ).

ontemporary views of cortical organization have highlighted that the

ortex is organized by an apparent rich-club structure, in which cer-

ain hub regions are more densely connected to themselves than to the

est of the brain ( Avena-Koenigsberger et al., 2019 , 2018 ; Bullmore and

porns, 2009 ; van den Heuvel et al., 2012 ). We identified the rich-club

ollowing established procedures ( Fig. 4 A). Rich-club nodes were lo-

ated at backbone structures and surrounded by feeder nodes, and local

odes were located near sensorimotor areas ( Fig. 4 A ). Notably, high

fMPA was observed in local nodes for the transitions within fM1 and

rom fM2 to fM1, while no differences were found within fM2 and from

M1 to fM2, indicating that the transitions in sensorimotor-dominated

tates primarily occurred in the locally-connected brain regions and

hose in transmodal states occurred uniformly across either local or hub

odes. 

As a complementary information to rich-club taxonomy, we

tratified ΔfMPA according to structural connectivity distance

 Larivière et al., 2019b ; Oligschläger et al., 2019 ). Stratifying dy-

amic functional changes ( ΔfMPA) with respect to connectivity

istance, we observed that transitions within fM1 or from fM2 to fM1

ore frequently involved short-range connections, while those within

M2 or from fM1 to fM2 involved long-range connections ( Fig. 4 B).

hifts in ΔfMPA according to connectivity distance indicate that

arked transitions occurred along with the short-range connections for

ow-level brain states, while transitions for the higher-order brain state

ncreasingly used long-range connections. Our results indicate that

ransitions involving sensorimotor states traverse along the path with

hort distances, while those in transmodal states engage long-range

onnections across network hubs. 
We furthermore derived mean first-passage time and path length

rom the structural connectome to assess structurally-governed network

ommunication ( Avena-Koenigsberger et al., 2018 ; Goñi et al., 2014 ).

nterestingly, higher mean first-passage time was observed in transitions

ithin fM1 and from fM2 to fM1 compared to transitions from fM1 to

M2 and within fM2. Similarly, higher path length was observed within

M1, and it monotonically decreased in transitions between meta-states

nd within fM2 ( Fig. 4 C). This analysis indicates different functional

tates are associated to different structural communication mechanisms.

pecifically, communication in functional states localized in low-level

ensory areas is better explained by network diffusion. On the other

and, functional states in transmodal regions are better explainable by

outing along shortest paths. Results for mean first-passage time and

ath length were consistent when considering those brain regions of

he top 10, 15, and 20% ΔfMPA within and between meta-states (Fig.

4). To further validate our findings using different graph parametriza-

ion methods, we calculated search information and path transitivity.

igher search information was observed in transitions within fM1 and

onotonically decreased in transitions between meta-states and within

M2. In contrast, higher path transitivity was observed within fM2 and

n transitions from fM1 to fM2 compared to fM1 (Fig. S5), suggesting

onsistent results with mean first-passage time and path length. 

.6. Cortical hierarchy and functional dynamic transitions 

To assess how the dynamic fluctuations of brain function change ac-

ording to contemporary views of cortical hierarchy ( Fig. 5 A), we first

omputed the mean hierarchical level for each brain state based on hi-

rarchical system proposed by Marcel Mesulam ( Mesulam, 1998 ). Brain

tates in fM1 had a tendency for lower mean hierarchical levels than

hose in fM2 (mean ± SD = 1.70 ± 1.10 vs. 2.61 ± 1.14; t = -1.50,

ne-tailed p = 0.08). Although the difference was not statistically sig-

ificant, this suggest that both meta-states may be involved in differ-

nt hierarchical levels, where dynamic functional states in fM1 were

nchored in lower levels of the hierarchy, while those in fM2 were an-

hored in higher levels ( Fig. 5 B). We aimed to understand the specific

eatures of cortical topology that underpinned this relationship by cal-

ulating the proportion of rich-club nodes, connectivity distance, and

iffusion/routing communication ratio ( i.e., ratio between mean first-

assage time and path length) within each of the four levels of the hier-

rchy. Confirming the differentiation of our structure-function relation-

hips across the hierarchy, we observed a higher proportion of rich-

lub nodes and longer connectivity distance in higher-order regions,

ogether with lower diffusion/routing communication ratio ( Fig. 5 C).

mportantly, beyond the location of states in the hierarchy, the magni-

ude of structure-function coupling ( i.e., correlation between sG1 and

fMPA) was strong when dynamic states changed within the low hi-

rarchical levels, between low- and high-level hierarchies, while the

oupling appeared weakest for dynamic transitions between high level

tates ( Fig. 5 D). Together, this result supports our finding that structure-

unction correspondence is strong when dynamic transitions involve

ensorimotor states and that correspondence decreases when transitions

re anchored in transmodal states. 

.7. Sensitivity and replication experiments 

Repeating the above analysis across spatial scales ( i.e., 100, 300, and

00 parcels), findings were highly consistent at parcel resolutions > 100

Fig. S6–8). Correlations between sG1 and ΔfMPA became somewhat

eaker at the lowest resolution of 100 parcels, indicating that more

ranular parcellations may be more efficient for the study of associa-

ions between structural connectivity and functional dynamics. To as-

ess reproducibility, we performed the same analyses on the initially

eld out Replication dataset from the HCP. We observed virtually iden-

ical patterns of structural connectome gradients, functional meta-states,

nd structure-function associations (Fig. S9–10). Finally, main findings
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Fig. 3. Morphological associations. (A) Correlations between cortical thickness and ΔfMPA, showing scatter plots and spin test histograms. (B) Correlations between 

cortical folding and ΔfMPA. (C) Correlations between ΔfMPA and sG1, corrected for cortical morphology. (D) Linear model between ΔfMPA and sG1 and sG2, 

corrected for cortical morphology. 
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Fig. 4. Connectome topology analysis. (A) ΔfMPA in terms of rich-club taxonomy. Rich-club coefficients according to different degree levels were reported on the 

left side and the magnitudes of ΔfMPA of rich-club, feeder, and local nodes were reported on the right side. The error bars represent the standard deviation of ΔfMPA 

across brain regions. (B) ΔfMPA in regard to connectivity distance. The connectivity distance was reported on the left side and the magnitudes of ΔfMPA according 

to the connectivity distance were reported on the right side. (C) Mean first-passage time and path length with respect to the meta-state transitions. The error bars 

indicate the standard deviation of network communication measures across transitions. 
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ould be confirmed in the independent 3T dataset from our local site

hat had slightly different imaging parameters as HCP (MICA-MTL) (Fig.

11). 

. Discussion 

Understanding how the structure of the cortex gives rise to ongoing

ognitive function is a key aim for systems neuroscience ( Batista-García-

amó and Fernández-Verdecia, 2018 ; Baum et al., 2020 ; Becker et al.,

018 ; Ciric et al., 2017 ; Hermundstad et al., 2013 ; Honey et al.,

009 ; Mi ŝ ic et al., 2016 ; Park and Friston, 2013 ; Rubinov et al., 2009 ;

nyder and Bauer, 2019 ; Suárez et al., 2020 ; Vázquez-Rodríguez et al.,

019 ; Wang et al., 2019 , 2015 ). Yet, it remains unclear how a hard-

ired neural architecture can give rise to flexible ( i.e., time-varying)

eural dynamics. Our analysis established that low dimensional repre-

entations of white matter connectivity are closely aligned with spa-

iotemporal patterns of dynamic functional transitions between lower-

evel sensorimotor states, and between lower-level and higher-order

ransmodal states. Conversely, transitions between states anchored in

ransmodal regions were not simply explained by structural connectome
rganization. This apparent difference may occur because transitions be-

ween transmodal states preferentially related to subnetworks that com-

unicate increasingly via a routing strategy involving long-range and

lobally efficient connections. In contrast, sensorimotor state changes

ere primarily explicable in terms of changes through local network

iffusion and implicated shorter connectivity distances. Findings were

obust across multiple sensitivity analyses and could be replicated in dif-

erent datasets. Together, our work suggests that flexible neural dynam-

cs may rely on a balance between complementary features of structural

onnectome organization: Local aspects of brain structure are important

or shifts between neural states anchored in sensorimotor cortex, and a

ore distributed rich club architecture support transitions between neu-

al states anchored in transmodal cortex. 

Our study capitalized on manifold learning techniques applied to

tructural connectome data, an approach that has recently gained trac-

ion in the neuroimaging and network neuroscience communities, as

t offers novel perspectives on dimensions of brain organization giving

ise to human cognition ( Margulies et al., 2016 ; Vos de Wael et al.,

020 ). While similar algorithms have been applied to microstructural

nd functional connectivity data ( Burt et al., 2018 ; Huntenburg et al.,
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Fig. 5. Transition patterns in terms of cortical hierarchy. (A) Hierarchical cortical organization according to a model of the cortical hierarchy developed in non- 

human primates ( Mesulam, 1998 ). (B) fMPA patterns weighted according to mean hierarchical levels. Red bars indicate the point that exhibited maximum fMPA 

value. (C) Connectome topology analysis according to hierarchical levels. Proportion of rich-club nodes, connectivity distance, and network communication ratio 

are reported with respect to the different levels of cortical hierarchy. (D) Correlation between sG1 and ΔfMPA, and mean hierarchical level for every pair of state 

transitions. The magnitude of structure-function coupling is quantified according to the mean hierarchical levels on the right side, showing highest coupling in low 

hierarchical levels and lowest in high levels. 
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017 ; Margulies et al., 2016 ; Paquola et al., 2019 ; Shine et al., 2019 ;

os de Wael et al., 2020 ), they remained underexplored in the analysis

f dMRI-derived connectomes. Conceptual work has advocated for the

se of gradients to capture subregional heterogeneity and multiplicity

 Haak and Beckmann, 2020 ; Margulies et al., 2016 ), yet, only few ap-

lications leveraged manifold learning on dMRI tractography data and

hese were mainly restricted to individual regions ( Beckmann et al.,

009 ; Cerliani et al., 2012 ) or specific lobes ( Bajada et al., 2017 ), of-

en to guide subregional parcellations. In contrast, directly analyzing

he low dimensional spaces obtained from dMRI data revealed that

hese gradients can serve as a powerful coordinate system to visual-

ze and contextualize functional dynamics at macroscale. Similar to

lassical sensory-transmodal gradients derived from myelin sensitive

RI, as well as resting-state functional connectivity data ( Hong et al.,

019 ; Larivière et al., 2019a ; Margulies et al., 2016 ; Paquola et al.,

019 ), dMRI gradients are anchored by sensory and motor systems, and

uided by spatial proximity. On the other hand, dMRI manifolds ap-
eared less specific to the transmodal and paralimbic system than rs-

MRI and myelin sensitive measures, both of which capture spatially

istributed, potentially polysynaptic cortical systems, such as the de-

ault mode or frontoparietal network ( Hong et al., 2019 ; Larivière et al.,

019a ; Margulies et al., 2016 ; Paquola et al., 2019 ). Our study shows

hat the application of gradient methods to dMRI metrics can com-

lement graph theoretical analyses, suggesting that including both ap-

roaches in future approaches could help refine our understanding of

tructure-function relationships more generally. 

Having delineated the principal dimensions of cortical structural

onnectivity, we used these to interrogate the capacity of this mani-

old to describe structure-function coupling. An increasing body of prior

ork studied the correspondence between brain structure and function,

sing statistical analyses ( Messé et al., 2014 ; Mi ŝ ic et al., 2016 ), com-

unication models ( Goñi et al., 2014 ; Mi š i ć et al., 2015 ), biophysical

imulations ( Breakspear, 2017 ; Deco et al., 2009 ; Honey et al., 2009 ;

ang et al., 2019 ), and artificial intelligence ( Rosenthal et al., 2018 ).
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l  
ere, we expanded from prior work assuming stationarity in brain func-

ion by inferring time-varying functional states and their transitions

 Gotts et al., 2020 ; Hansen et al., 2015 ; Vidaurre et al., 2018 , 2017)

sing HMMs to describe dynamic neural changes that emerge during

akeful rest. Our analysis highlighted a temporal hierarchy that re-

ects a division between low-level sensorimotor and higher-order trans-

odal states, replicating earlier applications of HMMs to resting-state

ata ( Vidaurre et al., 2017 ). Importantly, relating these distinct func-

ional states to structural connectome manifolds, we found that they

ere uniquely related to complementary features of cortical organi-

ation. Structural connectome dimensions were particularly useful in

escribing transitions between low-level functional states and between

ow- and high-level states. On the other hand, they could not strongly

apture transitions within the transmodal regime, a pattern that echoes

rior findings that close relationships between structure and function ex-

st in primary sensorimotor areas while the associations become increas-

ngly divergent in transmodal cortices ( Park and Friston, 2013 ; Vázquez-

odríguez et al., 2019 ). Notably, structure-function coupling was more

arked for the first structural gradient, while the second gradient did

ot reveal a significant association with function. However, when we

ncorporated both gradients into a common linear regression, the sec-

nd gradient indeed improved model performance. A potential expla-

ation for these increases is the interaction between the first two gradi-

nts, which might come from continuously changing connectivity pat-

erns as well as potentially overlapping multiple gradients ( Haak et al.,

018 ; Haak and Beckmann, 2020 ). Topological parameterization based

n connectivity distance and rich-club taxonomy related the dynamic

unctional findings to two important features of core-periphery distinc-

ion established by graph theoretical studies ( de Reus and van den

euvel, 2013 ; Griffa and van den Heuvel, 2018 ; Liang et al., 2018 ;

hu et al., 2018 ; van den Heuvel et al., 2012 ; Zhao et al., 2017 ). In fact,

ynamic transitions in the sensorimotor state-space engaged mainly

hort- and intermediary-range connections, while transitions within the

igher-order meta-state increasingly occupied rich-club nodes that are

utually interconnected by long-range connections. The differential oc-

upation of nodes with a more regional versus a more large-scale con-

ectivity pattern in lower versus higher-order functional states may re-

ect different ways they related to large-scale brain dynamics, with

odes involved in more segregated sensorimotor states having a more

ocalized connectivity profile while higher-order functions are orches-

rated by nodes with a more integrated connectivity profile. This con-

lusion is consistent with our application of connectome-informed com-

unication models, which assume functional signal transmission occurs

long structural network edges ( Avena-Koenigsberger et al., 2019 , 2018 ;

oñi et al., 2014 ). We established that sensorimotor states and their

ransitions frequently involve decentralized mechanisms of network dif-

usion, where signals diffuse locally without necessarily traversing along

he shortest possible paths. In contrast, functional transitions within the

ransmodal regime increasingly leverage centralized, and globally effi-

ient, routing strategies to maintain long-range communication across

istributed hubs. These results, therefore, highlight that dynamic infor-

ation flow in the brain adheres to different modes of communication,

anging from more decentralized network diffusion processes that run

ithin multiple parallel hierarchies anchored on specific sensorimotor

ystems towards connector nodes on the one hand, and a more central-

zed and topology-sensitive routing mechanism that enables the brain-

ide integration of the information aggregated by these hubs in a glob-

lly efficient manner, on the other ( Avena-Koenigsberger et al., 2019 ,

018 , 2014; Goñi et al., 2014 ). Future work may determine whether

hese different communication processes are mediated by different sig-

aling properties. A prior computational model of non-human primate

ortical dynamics that incorporated a gradient of synaptic excitation

uggested multiple temporal hierarchies across the cortex, with lower-

evel sensorimotor areas involving fast signaling mechanisms while

igher-order cognitive areas demonstrated slow and integrated activ-

ty ( Chaudhuri et al., 2015 ). In that study, hierarchical position was
ound to correlate with the number of synaptic spines representing a

lausible microcircuit substrate underlying an area’s capacity to en-

age in integrative function. The current study adopted mean first-

assage time and path length, as well as search information and path

ransitivity, to explore structurally-governed network communication

echanisms underlying dynamic functional states. These metrics repre-

ent a spectrum of communication processes anchored on shortest path

ommunication ( i.e., routing) at one extreme, and random walk pro-

esses ( i.e., diffusion) at the other extreme ( Avena-Koenigsberger et al.,

019 , 2018 ). Communication models residing between these two ex-

remes may include (i) communicability, which considers non-shortest

aths to characterize complex networks ( Estrada and Hatano, 2008 ), (ii)

avigation, a decentralized network communication strategy that cap-

ures long and inefficient paths as well as shortest paths ( Seguin et al.,

019 , 2018 ), and (iii) spreading models, which describe how local per-

urbations trigger global cascades ( Mi š i ć et al., 2015 ). These commu-

ication models may provide additional information for understand-

ng the correspondence of brain structure and function ( Baum et al.,

020 ; Hermundstad et al., 2013 ; Honey et al., 2009 ; Mi ŝ ic et al., 2016 ;

smanl ı o ğlu et al., 2019 ; Seguin et al., 2020 ; Snyder and Bauer, 2019 ;

uárez et al., 2020 ; Vázquez-Rodríguez et al., 2019 ) beyond our cur-

ent findings based on diffusion and routing. An interesting future di-

ection to link brain structure and functional dynamics may capitalize

n asymmetric communication measures ( Avena-Koenigsberger et al.,

019 , 2018 ; Goñi et al., 2014 , 2013; Rubinov and Sporns, 2010 ). A

ecent study estimated send-receive communication asymmetry from

ndirected structural connectome data, and found that this asymmetry

ecapitulated functional gradients differentiating low-level sensory to

igher-order transmodal areas ( Seguin et al., 2019 ). It may be of interest

o explore whether the asymmetric measures can further be associated

o communication mechanisms across different structurally-determined

nd temporal hierarchies, particularly in transmodal networks and a

igher-order dynamic state space. 

Our findings were consistent across different HCP subsamples and

ould be replicated in an independent dataset. We also assessed the

onsistency of our findings across different spatial scales. Findings were

onsistent at parcellations with 200 and 300 parcels. We found fairly

onsistent structure-function coupling, where transitions within senso-

imotor state and between the meta-states showed high correlations.

nlike the main findings based on 200 parcels, brain regions from 400

ode parcellation showed non-significant correlation between sG1 and

ransitions from fM1 to fM2, and significant correlation with transitions

ithin fM2. This discrepancy may be due to the parcellation approach,

hich may potentially mix the fMRI signals from different set of ver-

ices. However, why the association between structural manifolds and

unctional dynamics vary across different parcellation scales needs to be

nvestigated further. 

Finally, we also re-expressed our main findings by leveraging a well-

stablished model of cortical hierarchical organization developed in

on-human primates ( Mesulam, 1998 ). This model-based analysis con-

rmed that rich-club proportion, overall connectivity distance, and the

ncreasing use of network routing relative to diffusion increases along

he putative cortical hierarchy. Similarly, this analysis also established

ow the coupling between structure and dynamic functional transitions

elated to hierarchical levels. Local structural constraints on functional

ynamics may be particularly strong when state transitions involve low-

evel cortical systems and when transitions involve bottom-up and top-

own changes in hierarchical levels, but they may not have such a tight

rip on transitions occurring within the higher-order regime of corti-

al hierarchy. Contemporary perspectives on brain wide information

rocessing often focus on the process through which sensorimotor in-

uts gain access to a global workspace that allows these information

o be processed in an explicit conscious manner ( Dehaene et al., 1998 ;

ashour et al., 2020 ). It is possible that neural dynamics within higher

ierarchical levels increasingly engage polysynaptic mechanisms that al-

ow for integrated and flexible processing, which ultimately allows for
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he implementation of adaptive control processes for which conscious

xperience is argued to be important ( Mesulam, 1990 ). 

In sum, our study provides a novel perspective on one of the major

uestions in systems neuroscience: How does the hard-wired structure

f the cortex support dynamic functional changes that are necessary for

exible cognition? Our results suggest that this is achieved by balanc-

ng local and distant influences in structural constraints. We established

hat dynamic modes of neural function that are closely linked to lower-

evel sensorimotor systems are constrained by local features of cortex. In

ontrast, neural function linked to transmodal regions emerge within a

et of constraints that reflect the long-range network routing. Our study,

hus, suggests that the wiring of the human brain implements local and

istal communication strategies, and that the balance of these two as-

ects of the structural connectome may be important in supporting both

pecialized and integrated aspects of cognitive processing. 
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