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ARTICLE INFO ABSTRACT

Keywords: Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often
structural connectome self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor par-
gradients ticular modes of brain function, mechanisms that describe transitions between distinct functional states remain

functional dynamics
Hidden Markov Model
multimodal imaging
diffusion MRI

poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints
imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we
capitalized on manifold learning techniques that identify low dimensional representations of structural connec-
tome organization and we decomposed neurophysiological activity into distinct functional states and their tran-
sition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions
anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology
analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and
adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between trans-
modal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings
establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct
modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of
human cognition.

1. Introduction In both humans and non-human primates, links between brain structure

and specific cognitive functions have been well established in a station-

A core assumption of neuroscience is that brain structure governs
ongoing function (Batista-Garcia-Ramé and Fernandez-Verdecia, 2018;
Baum et al., 2020; Becker et al., 2018; Ciric et al.,, 2017;
Hermundstad et al., 2013; Honey et al., 2009; MiSic et al., 2016;
Park and Friston, 2013; Rubinov et al., 2009; Snyder and Bauer, 2019;
Suérez et al., 2020; Vazquez-Rodriguez et al., 2019; Wang et al., 2019,
2015). However, at the heart of this question is a puzzle: Brain struc-
ture remains relatively constant across time, yet the neural hardware
ultimately supports the flexible manner that an organism alters its reper-
toire of responses in line with changing external and internal demands.

* Corresponding authors.

ary manner (Han et al., 2009; MiSic et al., 2016; Wang et al., 2019). Al-
though these studies highlight links between specific neural patterns and
particular aspects of cognition (Honey et al., 2009; Misic et al., 2016;
Wang et al., 2015), such analyses are not well suited to understanding
how the brain flexibly changes between different modes of operation
(Allen et al., 2012; Bertolero et al., 2015; Friston et al., 2003; Kucyi et al.,
2018; Taghia et al., 2018). At the same time, contemporary neuroscience
has begun to recognize that global features of the connectome are also
important in how structure gives rise to function. Such views suggest
that systematic transitions across the cortex from sensorimotor regions
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to transmodal association areas may support increasingly abstract ele-
ments of cognition (Margulies et al., 2016; Mesulam, 1998). Moreover,
although these transmodal regions are spatially distributed, they are
also strongly interconnected, showing a rich-club architecture that im-
plies a role in the control of more integrated cognitive states (Avena-
Koenigsberger et al., 2019, 2018; Griffa and van den Heuvel, 2018;
Misic et al., 2016; van den Heuvel et al., 2012). In this study, we explore
the hypothesis that specific features of cortical structural connectome or-
ganization support the transitions that brain makes between naturally
occurring neural states.

Recent advances in techniques for measuring brain organization and
function in vivo, such as diffusion magnetic resonance imaging (dMRI)
and functional MRI (fMRI), have put systems neuroscience in an un-
precedented position to understand features of brain organization that
support flexible transitions between different modes of neural opera-
tion (Allen et al., 2012; Bertolero et al., 2015; Damaraju et al., 2014;
Friston et al., 2003; Kucyi et al., 2018; Lee et al., 2019; Park et al., 2019,
2018b; Razi et al., 2017; Taghia et al., 2018; Vidaurre et al., 2017). Our
current study combines state-of-the-art manifold learning techniques to
identify compact spatial representations of cortical structural connec-
tome organization, and we applied dynamic fMRI ananlysis to estimate
transient functional brain states (Margulies et al., 2016; Vidaurre et al.,
2017). In the structural domain, we build on work capturing topological
organization of the cortex in a low dimensional manifold space, which
has recently provided novel insights into human cognition at macroscale
(Huntenburg et al., 2018; Margulies et al., 2016). Such techniques have
been widely adopted in resting-state fMRI (rs-fMRI) studies of specific
regions and the whole brain (Hong et al., 2019; Lariviere et al., 2019a;
Margulies et al., 2016; Vos de Wael et al., 2018). However, manifold
learning applications to dMRI tractography data have so far focused on
specific areas (Bajada et al., 2017; Cerliani et al., 2012), rather than
addressing whole-brain connectivity. In the functional domain, we use
dynamic functional connectivity analysis to capture transient features
of brain function. Dynamic functional connectivity analysis has recently
provided novel insights into large-scale brain organization (Allen et al.,
2012; Ashourvan et al., 2017; Chai et al., 2017; Damaraju et al., 2014;
Khambhati et al., 2018; Razi et al., 2017), inter-individual differences
in cognitive functions (Bassett et al., 2011; Bertolero et al., 2015;
Braun et al., 2015; Chai et al., 2016; Kucyi et al., 2018; Park et al., 2019;
Taghia et al., 2018; Vidaurre et al., 2017), and network perturbations
in prevalent brain disorders (Damaraju et al., 2014; Khambhati et al.,
2015; Lee et al., 2019; Park et al., 2018a, 2018b). One method that can
resolve functional dynamics is the Hidden Markov Model (HMM), a gen-
erative probabilistic framework that identifies time-varying brain states
and associated connectivity profiles (Vidaurre et al., 2017). Recent stud-
ies have capitalized on HMMs to estimate the hierarchical organization
of the dynamic state space in rs-fMRI data and assessed associations to
cognitive phenotypes (Vidaurre et al., 2017) and task-related brain ac-
tivations (Vidaurre et al., 2016). Here, HMMs were used to characterize
brain states that occur at rest and to assess the correspondence between
these patterns and those derived purely from structural connectomics.
In particular, we examined how these changes map onto both low di-
mensional cortical representations of macroscale features of the cortex.
We did not make a-priori predictions how structurally-defined low di-
mensional manifolds may relate to measures of functional dynamics, as
whole-brain gradients derived from dMRI tractography data have not
been systematically studied in humans nor integrated with HMM data.
To however further contextualize the structure-function relationships
identified in our study, we examined topological properties of structural
network organization and assessed how these may implement different
communication mechanisms (Avena-Koenigsberger et al., 2019, 2018;
de Reus and van den Heuvel, 2013; Goiii et al., 2014; Griffa and van den
Heuvel, 2018; Liang et al., 2018; Shu et al., 2018; van den Heuvel et al.,
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2012; Zhao et al., 2017). These include the rich-club taxonomy, which
classifies cortical organizations in terms of degree distributions into a
densely interconnected rich-club core and a more locally connected pe-
riphery (Griffa and van den Heuvel, 2018; van den Heuvel et al., 2012),
as well as network communication measures that can contrast more pas-
sive network diffusion mechanisms against routing strategies that pref-
erentially follow shortest paths (Avena-Koenigsberger et al., 2019, 2018;
Goiii et al., 2014).

Our study provided a low dimensional description of structural con-
nectome architecture and explored its association to transient functional
states in the resting brain. We capitalized on high-definition dMRI and
rs-fMRI data provided by the Human Connectome Project (HCP) repos-
itory (Van Essen et al., 2013) and also assessed an independent locally
acquired datasets with similar imaging parameters. Foreshadowing our
results, we found evidence that cortical structural connectivity is opti-
mized to allow for flexibility between states anchored in unimodal re-
gions (that are well described by local properties of these regions cap-
tured by a low dimensional representations of cortical structure) and
states anchored by transmodal regions (which engage in efficient long-
range communication between states).

2. Methods
2.1. Participants

We assessed the minimally processed S900 release of the HCP
(Van Essen et al., 2013). Participants who did not complete full imaging
data and who had family relationships were excluded, resulting in a total
of 326 participants (mean + SD age = 28.56 + 3.73 years; 55% female).
Participants were randomly divided into a Discovery and Replication co-
hort. The Discovery dataset (n = 163; age = 28.86 + 3.78 years; 60%
female) was used for constructing a framework of structure-functional
dynamic coupling and the Replication dataset (n = 163; age = 28.26 +
3.67 years; 51% female) was used for testing reproducibility. All MRI
data used in this study were publicly available and anonymized. Par-
ticipant recruitment procedures and informed consent forms, including
consent to share de-identified data, were previously approved by the
Washington University Institutional Review Board as part of the HCP.

We replicated our findings in an independent dataset from our local
site (MICA-MTL, n = 47; age = 30.43 + 6.83 years; 35% female). This
dataset was approved by the Institutional Review Board of Montreal
Neurological Institute and Hospital and written and informed consent
was obtained from all participants.

2.2. MRI acquisition

2.2.1. HCP

HCP participants were scanned using a Siemens Skyra 3T at Wash-
ington University. The T1-weighted images were acquired using a
magnetization-prepared rapid gradient echo (MPRAGE) sequence (rep-
etition time (TR) = 2,400 ms; echo time (TE) = 2.14 ms; field of
view (FOV) = 224 x 224 mm?; voxel size = 0.7 mm?3; and number
of slices = 256). The T2-weighted structural data were obtained with
the T2-SPACE sequence, with an identical geometry as the T1-weighted
data but different TR (3,200 ms) and TE (565 ms). The dMRI data
were acquired with the spin-echo echo-planar imaging (EPI) sequence
(TR = 5,520 ms; TE = 89.5 ms; FOV = 210 x 180 mm?2; voxel size = 1.25
mm?3; b-value = three different shells ie., 1,000, 2,000, and 3,000
s/mm?; number of diffusion directions = 270; and number of b0 im-
ages = 18). The rs-fMRI data were collected using a gradient-echo EPI
sequence (TR = 720 ms; TE = 33.1 ms; FOV = 208 x 180 mm?; voxel
size = 2 mm3; number of slices = 72; and number of volumes = 1,200).
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During the rs-fMRI scan, participants were instructed to keep their eyes
open looking at a fixation cross. Two sessions of rs-fMRI data were ac-
quired; each of them contained data of left-to-right and right-to-left
phase-encoded directions, providing up to four time series per partic-
ipant.

2.2.2. MICA-MTL

The MICA-MTL imaging data were scanned using a Siemens Prisma
3T scanner at the Montreal Neurological Institute and Hospital. Image
acquisition parameters were similar to the HCP dataset (T1-weighted:
TR = 2,300 ms; TE = 3.14 ms; FOV = 256 x 180 mm?; voxel size = 0.8
mm?; and number of slices = 320; dMRI: TR = 3,500 ms; TE = 64.4
ms; FOV = 224 x 224 mm?; voxel size = 1.6 mm?3; b-value = three
different shells (200, 700, and 2,000 s/mm?); number of diffusion di-
rections = 140; and number of b0 images = 3; rs-fMRI: TR = 600 ms;
TE = 30 ms; FOV = 240 x 240 mm?2; voxel size = 3 mm3; number of
slices = 48; and number of volumes = 800).

2.3. Data preprocessing

2.3.1. HCP data

HCP data underwent the initiative’s minimal preprocessing pipelines
(Glasser et al., 2013). In brief, structural MRI data underwent gradient
nonlinearity and b0 distortion correction, followed by co-registration
between the T1-weighted and T2-weighted data using a rigid-body
transformation. Bias field correction was performed by capitalizing on
the inverse intensities from the T1- and T2-weighting. Processed data
were nonlinearly registered to MNI152 space and the white and pial
surfaces were generated by following the boundaries between different
tissues (Dale et al., 1999; Fischl, 2012; Fischl et al., 1999b, 1999a). The
white and pial surfaces were averaged to generate a mid-thickness sur-
face, which was used to generate the inflated surface. The spherical sur-
face was registered to the Conte69 template with 164k vertices (Van Es-
sen et al., 2012) using MSMAII (Glasser et al., 2016; Robinson et al.,
2014) and downsampled to a 32k vertex mesh. The dMRI data under-
went b0 intensity normalization, and EPI distortions were corrected by
leveraging reversed phase-encoded directions. The dMRI data was also
corrected for eddy current distortions and head motion. The rs-fMRI
data preprocessing involved corrections for EPI distortions and head
motion, and fMRI data were registered to the T1-weighted data and
subsequently to MNI152 space. Magnetic field bias correction, skull re-
moval, and intensity normalization were performed. Noise components
attributed to head movement, white matter, cardiac pulsation, arterial,
and large vein related contributions were automatically removed using
FIX (Salimi-Khorshidi et al., 2014). The minimal preprocessing with FIX-
denoising pipeline of the HCP performs a high-pass filtering with a cutoff
of 2,000 s full width at half maximum (Glasser et al., 2013). Prepro-
cessed time series were mapped to standard grayordinate space, with a
cortical ribbon-constrained volume-to-surface mapping algorithm. The
total mean of the time series of each left-to-right/right-to-left phase-
encoded data was subtracted to adjust the discontinuity between the
two datasets and they were concatenated to form a single time series
data.

2.3.2. MICA-MTL

MICA-MTL data were processed similarly as the HCP data. In brief,
T1-weighted data were deobliqued, reoriented, skull stripped, and
cortical surfaces were generated using FreeSurfer (Dale et al., 1999;
Fischl, 2012; Fischl et al., 1999b, 1999a). The dMRI data was processed
using MRtrix (Tournier et al., 2019, 2012) including correction for sus-
ceptibility distortions, head motion, and eddy currents. The rs-fMRI
data were processed using AFNI and FSL (Cox, 1996; Jenkinson et al.,
2012). The first five volumes were discarded to allow for magnetic
field saturation, followed by reorientation, motion and distortion correc-
tion, skull stripping, and nuisance variable removal using FIX (Salimi-
Khorshidi et al., 2014). Functional time series were mapped to each
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individual’s cortical surface using boundary-based registration and sub-
sequently to the 32k vertex Conte69 template.

2.4. Structural connectome generation and manifold identification

Structural connectomes were generated from preprocessed dMRI
data using MRtrix (Tournier et al., 2019, 2012). Different tissue types
of cortical and subcortical grey matter, white matter, and cerebrospinal
fluid were segmented using T1-weighted image for anatomical con-
strained tractography (Smith et al., 2012). Multi-shell and multi-tissue
response functions were estimated (Christiaens et al., 2015) and con-
strained spherical-deconvolution and intensity normalization were per-
formed (Jeurissen et al., 2014). The initial tractogram was generated
with 40 million streamlines, with a maximum tract length of 250
and a fractional anisotropy cutoff of 0.06. Spherical-deconvolution in-
formed filtering of tractograms (SIFT2) was applied to reconstruct whole
brain streamlines weighted by cross-section multipliers (Smith et al.,
2015). To build a structural connectome, the reconstructed cross-section
streamlines were mapped onto the Schaefer atlas with 200 parcels
(Schaefer et al., 2018). Connectome data were log-transformed to re-
duce connectivity strength variance (Fornito et al., 2016; Goni et al.,
2014).

The principal eigenvectors explaining spatial shifts in the structural
connectome, referred to as structural connectome gradients were esti-
mated using the BrainSpace toolbox (https://github.com/MICA-MNI/
BrainSpace) (Margulies et al., 2016; Vos de Wael et al., 2020). A cosine
similarity matrix was constructed from the group averaged structural
connectome to capture the similarity of connections among different
brain regions. We capitalized on diffusion map embedding, a non-linear
manifold learning algorithm, to identify low dimensional manifolds (i.e.,
principal components) (Cox, 1996). In this manifold, strongly intercon-
nected brain regions that have many and/or strong connections are
closely located, while regions with little and/or weak inter-connectivity
are farther apart. Diffusion map embedding algorithm is robust to noise
and computationally efficient compared to other non-linear manifold
learners (Tenenbaum et al., 2000; Von Luxburg, 2007). The algorithm
is controlled by two parameters « and t, where « controls the influence
of the density of sampling points on the manifold (¢ = 0, maximal in-
fluence; a = 1, no influence) and t controls the scale of eigenvalues of
the diffusion operator. We followed recommendations and fixed « at
0.5 and t at 0, a choice that retains the global relations between data
points in the embedded space (Hong et al., 2019; Margulies et al., 2016;
Paquola et al., 2019; Vos de Wael et al., 2018).

2.5. Dynamic functional connectivity analysis

Dynamic functional connectivity analysis was performed using a
multivariate autoregressive HMM approach, which models distinct brain
states via a multivariate Gaussian distribution and which infers model
parameters via variational Bayes (https://github.com/OHBA-analysis/
HMM-MAR) (Vidaurre et al., 2017). The number of brain states was de-
termined according to the following six steps: (1) For each participant,
we divided the functional time series into ten non-overlapping segments
and (2) applied k-means clustering to 9/10 time series segments with k
ranging from 2 to 20. (3) For each k, we calculated the ratio of between-
cluster variance to total variance, and the optimal number of brain states
for the given time series was determined as the minimum value at which
the explained variance exceeded 90% of total variance (Kodinariya and
Makwana, 2013; Park et al., 2018b). (4) We repeated steps 1-3 for a to-
tal of 10 times with different time segments within a participant, and (5)
also repeated steps 1-4 for all participants. (6) Finally, we determined
the optimal number of brain states for HMM training as the most fre-
quently observed number of k across time segments and participants. We
trained HMM using the concatenated time series across participants. To
mitigate circularity (Kriegeskorte et al., 2009), we used different time
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segments for HMM training and brain state estimation. For each par-
ticipant, we concatenated 50% of the time series from session 1 and
the other 50% from session 2. Then, we concatenated this reconstructed
time series across all participants to train the HMM. The trained model
was applied to the rest of the time series to estimate distinct brain states.
HMM estimates specific states, where a state k is characterized by a mul-
tivariate Gaussian distribution with a mean distribution of whole-brain
activity () and covariance matrix (Z;) (Vidaurre et al., 2018, 2017).
Specifically, time series data x in the hidden state s at time t follows the
multivariate Gaussian distribution N as follows:

x|s, =k ~ N (1. %) (€Y

Here, y; is a vector of mean blood oxygen level-dependent (BOLD) acti-
vation, which is here referred to as functional mean patterns of activa-
tion (fMPA), and X is the covariance matrix when state k is active. In
addition, HMM estimates transition probabilities between brain states
and allows representing the frequency of transitions (Vidaurre et al.,
2018, 2017). Meta-states, i.e., communities of functional states, were
estimated to simplify the transition structure (Vidaurre et al., 2017), by
applying the Louvain community detection algorithm (Blondel et al.,
2008) to the transition probability matrix. To avoid effects related to
random HMM (initialization, HMM training, estimating brain states, and
meta-state estimation were repeated 100 times. The most frequently ob-
served meta-state structure across iterations was selected.

2.6. Association between functional dynamics and structural connectome
organization

Structure-function coupling was first assessed by spatial associations
(i.e., linear product moment correlation coefficients) between structural
gradients and differences in fMPA (AfMPA) within and between meta-
states. Specifically, we calculated AfMPA as the average of differences in
fMPA between all possible pairs of transitions within or between meta-
states:

=
™=
Mz

~.
Il

AfMPAs 1) = FMPAg - fMPA;, o)

i=1

Here, i and j are individual states within meta-states S and T; N and
M are the numbers of individual states in the meta-states; and A is
the number of possible pairs of state transitions (i.e., transitions within
meta-state: A=, C,, transitions between meta-states: A= N - M). The
significance of the correlation was assessed using 1,000 spin tests, which
randomly rotate AfMPA and hence preserve the spatial autocorrelation
(Alexander-Bloch et al., 2018). A null distribution was constructed, and
the real correlation strength was deemed significant if it belonged to
the 5% percentile. To evaluate whether the above structure-function as-
sociations were robust above and beyond inter-regional variations of
cortical morphology, we correlated AfMPA with MRI-derived cortical
thickness and folding measures (derived from FreeSurfer). In addition,
we controlled for cortical thickness and folding when correlating AfMPA
with structural connectome gradients, to establish that structural gradi-
ents explain dynamic functional shifts above and beyond the effects of
cortical morphology.

2.7. Associations of functional dynamics with network topology

To assess structural network topology underpinnings of distinct func-
tional dynamic states, we stratified AfMPA in terms of rich-club tax-
onomy, a topological measure sensitive to core-periphery organization
of the network (Griffa and van den Heuvel, 2018; van den Heuvel
et al., 2012). The rich-club is a set of highly interconnected high-
degree nodes. It has been shown to play an important role in infor-
mation integration between different brain networks and aggregates
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most long-range connections of the human brain (de Reus and van den
Heuvel, 2013; Griffa and van den Heuvel, 2018; Liang et al., 2018;
Shu et al., 2018; van den Heuvel et al., 2012; Zhao et al., 2017). In
contrast, peripheral nodes show shorter, more local connections and
serve in more specialized, segregated functions (de Reus and van den
Heuvel, 2013; Griffa and van den Heuvel, 2018; Liang et al., 2018;
Shu et al., 2018; van den Heuvel et al., 2012; Zhao et al., 2017). The
weighted rich-club coefficient ¢ (k) was calculated from the group rep-
resentative structural connectome, defined using a distance-dependent
thresholding (Betzel et al., 2019), using the Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/) (Rubinov and Sporns, 2010).
The ¢"(k) was calculated across different levels of degree (k) rang-
ing from 1 to the maximal degree and was normalized against 1,000
randomly rewired networks with similar degree distribution. Degree
levels in which (i) the normalized rich-club coefficient exceeded one
(e, " porm(k) > 1) and (ii) where there were significant differences
between real and randomized networks (p < 0.05, permutation test cor-
rected) were considered as the rich-club regime. The rich-club nodes
were defined as nodes exceeding the k™ degree level in the rich-club
regime (here, k = 28). Remaining nodes were classified into feeder nodes,
which had more than 10% connections with rich-club nodes, and lo-
cal nodes, which had less than 10% connections (Hong et al., 2019).
The magnitude of AfMPA within and between meta-states was quanti-
fied according to the rich-club taxonomy and they were compared us-
ing two-sample t-tests across rich-club, feeder, and local nodes. Find-
ings were corrected at a false discovery rate <0.05 (Benjamini and
Hochberg, 1995).

Structural connectivity distance provides an index of network hierar-
chy complementary to rich-club taxonomy, given the observation that
backbone hubs often host longer-range connections to distributed tar-
gets than local nodes that mostly travel along short-range paths (Avena-
Koenigsberger et al., 2019; van den Heuvel et al., 2012). To assess the
relationship between functional dynamic transitions and structural con-
nectivity distance, we stratified AfMPA according to connectivity dis-
tance (Lariviére et al., 2019b; Oligschlager et al., 2019). Connectivity
distance, thus, indicates a given brain area’s average geodesic distance
to its structurally connected regions (Oligschlager et al., 2019). Geodesic
distance was defined as the shortest path connecting two points along
the cortical surface, following prior procedures (Ecker et al., 2013;
Hong et al., 2018; Margulies et al., 2016). It represents the physical dis-
tance between the two cortical points when travelling through the corti-
cal sheet, and does not depend on network topology. The multiplication
between the geodesic distance and the binarized structural connectome
was performed, and the row-wise mean was calculated to compute the
connectivity distance (Hong et al., 2019; Oligschléger et al., 2019). The
connectivity distance was partitioned into 10 bins and the magnitude of
AfMPA was quantified according to each bin.

2.8. Role of network communication

In addition to the rich-club taxonomy and connectivity distance
measures, we leveraged network communication models that deter-
mine how a structural connectome can implement functional sig-
naling and information transfer (Avena-Koenigsberger et al., 2019,
2018; Goii et al., 2014) to associate functional dynamics to models
of structurally-governed communication (Avena-Koenigsberger et al.,
2018; Goni et al., 2014). The metrics of mean first-passage time and path
length measuring network diffusivity (Avena-Koenigsberger et al., 2018)
were calculated from the weighted structural connectivity matrix using
the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/)
(Rubinov and Sporns, 2010). Mean first-passage time quantifies the ex-
pected length of a random walk between two nodes, indicating a diffu-
sion mechanism (Avena-Koenigsberger et al., 2018; Goni et al., 2013).
Path length, on the other hand, is defined as the shortest weighted
path between the source and target; nodes with low path lengths con-
tribute to globally efficient communication (Avena-Koenigsberger et al.,
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2018; Goiii et al., 2014; Rubinov and Sporns, 2010). To assess differ-
ences in communication mechanisms of the brain regions showing large
changes in brain activity during meta-state transitions, we quantified
mean first-passage time and path length in the brain regions, which
showed a strong (top 5%) magnitude of AfMPA within and between
meta-states, and computed communication metrics on resultant subma-
trices. We repeated calculating mean first-passage time and path length
in the brain regions that showed the top 10, 15, and 20% magnitude
of AfMPA within and between meta-states to assess the consistency of
the findings. To confirm findings using alternative parameters, we ad-
ditionally stratified changes in AfMPA with respect to search informa-
tion and path transitivity (Avena-Koenigsberger et al., 2018; Goni et al.,
2014). Search information quantifies the amount of information needed
to access the path connecting from a source node to a target node
(Avena-Koenigsberger et al., 2018; Goqi et al., 2014). Similar to mean
first-passage time, higher search information indicates the diffuse prop-
erty of the network by implying that it requires a large amount of in-
formation to reach the target node through the shortest path (Avena-
Koenigsberger et al., 2018; Gonii et al., 2014). Path transitivity captures
the density of local detours along the given shortest path, indicating high
path transitivity represents the existence of many closed loops along
the path enabling a signal to return to the shortest path after detouring
(Avena-Koenigsberger et al., 2018; Goni et al., 2014).

2.9. Functional dynamic transitions in terms of cortical hierarchy

Finally, we contextualized functional dynamic transitions within a
prior model of neural organization formulated in non-human primates
that subdivides the cortex into four levels: idiotypic (level-1), unimodal
association (level-2), heteromodal association (level-3), and paralimbic
(level-4) cortices (Mesulam, 1998). Hierarchical weights of the fMPA
patterns for each state were quantified with respect to Mesulam hier-
archy for each brain state. The discretized fMPA was interpolated with
30 bins and the point that exhibited maximum fMPA value was selected
as the mean hierarchical level. For each hierarchical level, we calcu-
lated the following topological parameters and communication metrics:
(i) the proportion of rich-club nodes (relative to all nodes on that hi-
erarchical level), (ii) the average connectivity distance, and (iii) ratio
between signal diffusion to routing in terms of structurally-governed
communication. For diffusion/routing communication ratio, we calcu-
lated the ratio between mean first-passage time and path length. The
linear product moment correlation between the first structural gradi-
ent (sG1) and AfMPA and mean hierarchical level between all pairs of
brain states were computed. Then, the magnitude of structure-function
coupling (i.e., correlation between sG1 and AfMPA) was quantified ac-
cording to the mean hierarchical level to assess the relationship between
cortical hierarchy and structure-functional dynamic coupling.

2.10. Sensitivity and reproducibility analyses

a) Matrix thresholding. We repeated structural gradient estimation based
on structural connectomes with different levels of density (un-
thresholded, 25, 50, and 75% density).

b) Spatial scale. To evaluate the impact of spatial scale, we repeated our
analyses across different granularities of the Schaefer atlas (i.e., 100,
300, or 400 regions) (Schaefer et al., 2018).

¢) Reproducibility in HCP. We assessed reproducibility by performing
the same analyses on the independent Replication subset from the
HCP. Structural gradients, functional brain states, and the correla-
tion between structural gradients and AfMPA as well as morpho-
logical associations were computed and compared to those in the
Discovery cohort.

d) Reproducibility in another dataset. We furthermore replicated our find-
ings in a locally scanned cohort (MICA-MTL, n = 47).
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3. Results
3.1. Cortex-wide structural connectome gradients

We computed whole brain structural connectomes from all partic-
ipants, using an established parcellation scheme (See Supporting Infor-
mation for replication across partitioning schemes and spatial scales)
(Schaefer et al., 2018). Using non-linear dimensionality reduction tech-
niques, we derived structural connectome gradients (Vos de Wael et al.,
2020). The first two gradients (sG1, sG2) were selected, as these ex-
plained 44.5% of connectome variance and corresponded to the clearest
elbow in the scree plot (Fig. 1A). For additional information, the third
to fifth gradients (sG3, sG4, sG5) are shown in Fig. S1A but will not be
further discussed. While sG1 differentiated a sensorimotor from a me-
dial prefrontal anchor, sG2 extended from the ventral to dorsal visual
systems. Structural gradients were consistent across different levels of
density in structural connectomes, which showed mean product moment
correlations across spatial maps of 0.95 with SD 0.03 (p < 0.001) (Fig.
S1B).

3.2. Dynamic functional connectivity analysis

Dynamic changes in functional states were estimated using an HMM
(Fig. 1B). HMM provided the fMPA and associated connectivity matrix
for each brain state (Fig. S2A), as well as transition probabilities be-
tween states. Meta-states were estimated to simplify the transition struc-
ture (Vidaurre et al., 2017) via Louvain community detection (Fig. 1C)
(Blondel et al., 2008). This approach identified two functional meta-
states fM1 and fM2, each with distinct spatial activation and connec-
tivity patterns. fM1 showed high activation in sensorimotor and lat-
eral prefrontal regions while fM2 showed activations in default and
frontoparietal networks (Fig. 1D). Spatial correlations in activation pat-
terns between both meta-states were low (mean + SD r = 0.24 + 0.10),
while states falling within each meta-state showed moderate to high
correlations to one another (mean + SD r = 0.32 + 0.17 for fM1 and
r = 0.36 + 0.19 for fM2). Directly comparing the top 1% connections
between meta-states, fM1 had stronger connections in visual and so-
matosensory networks, and fM2 showed stronger connections in fron-
toparietal and default-mode networks (Table S1). Furthermore, the cor-
relation between fMPA of meta-states and meta-analysis maps of diverse
cognitive domains (Margulies et al., 2016), derived using Neurosynth
(Yarkoni et al., 2011), revealed distinct cognitive term associations be-
tween meta-states; fM1 was characterized by ‘motor’ terms while fM2
related to higher-order cognitive terms such as ‘autobiographical mem-
ory’ and ‘social cognition’ (Fig. S2B). Collectively, these findings support
that fM1 reflects a low-level sensorimotor state whereas fM2 is more in-
volved in higher-order transmodal functions.

3.3. Structural connectome gradients relate to dynamic functional
transitions

To assess structure-function correspondence, we computed product
moment correlations between structural connectome gradients sG1 and
sG2 and dynamic activity changes (AfMPA) within the two meta-states
fM1 and fM2, and between them. Activity changes for all transitions
involving fM1 were correlated with sG1 but not sG2, with significance
determined using non-parametric spin tests that adjust for shared spa-
tial autocorrelations (Fig. 2 and Fig. S3) (Alexander-Bloch et al., 2018;
Vos de Wael et al., 2020). Indeed, sG1 correlated with transitions within
fM1 (r = -0.5778, p < 0.001), from fM1 to fM2 (r = 0.3827, p < 0.05),
and from fM2 to fM1 (r = 0.4635, p < 0.005). Conversely, no signifi-
cant relationship was found in transitions within fM2 (r = 0.0758, p >
0.4). Although sG2 by itself did not significantly correlate with these
transitions, model fit (i.e., adjusted R2) generally improved when incor-
porating both sG1 and sG2 into a common model via linear regression
(+4.1% variance explained for transitions within fM1; +2.4% from fM1
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Fig. 1. Structural gradients and dynamic functional connectome profiles. (A) Manifolds estimated from the structural connectome. Systematic dMRI fiber tracking
generated a cortex-wide structural connectome, on which non-linear dimensionality reduction identified principal components describing connectivity variance.
The first two components (sG1 and sG2) corresponded to the clearest elbow in the scree plot. (B) Dynamic functional analysis leveraged Hidden Markov Models
(HMM) that decompose the time series into a set of states and their transition probabilities. (C) Transition probabilities were clustered using a community detection
algorithm to identify functional meta-states (fM1 and fM2). Line widths represent transition probability strengths, thresholded at 0.2. (D) The functional mean
patterns of activation (fMPA) for two meta-states (fM1, fM2) and their differences at the level of the whole brain and functional networks are shown in the upper
row. Significant differences in fMPA between fM1 and fM2 are indicated with an asterisk. Corresponding connectivity matrices and differences in edges with top
1% weights for the two meta-states are shown in the bottom row. Abbreviations: dATN, dorsal attention network; FPN, frontoparietal network; DMN, default-mode
network; VN, visual network; LBN, limbic network; SMN, sensorimotor network; vATN, ventral attention network.
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Fig. 2. Associations between structural gradients and functional dynamic transitions. (A) The AfMPA with respect to sG1 and sG2 were reported in the upper row.
The color indicates the magnitude of AfMPA. The AfMPA for transitions within and between meta-states are reported in the bottom row. (B) The correlation between
sG1 and AfMPA. Permutation-based correlation values across 1,000 spin tests are shown in the histogram, with the real correlation value indicated via a red line.
(C) Linear fit of AfMPA using both sG1 and sG2, incorporated via linear regression model.
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to fM2; +27.1% from fM2 to fM1; and +127.4% within fM2). For tran-
sitions within fM1 and from fM2 to fM1, both sG1 and sG2 showed sig-
nificant contributions for model fitting (within fM1: p < 0.001/0.0035
for sG1/sG2; from fM2 to fM1: p < 0.001/< 0.001). On the other hand,
only sG1 showed significance for the transitions between fM1 to fM2 (p
< 0.001/0.2059), and only sG2 showed significance for the transitions
within fM2 (p = 0.2859/0.0285).

3.4. Morphological structures are not relevant to functional dynamic
transitions

To assess contributions of regional morphological variations, we also
correlated MRI-derived measures of cortical thickness and folding to
AfMPA. We observed weak and non-significant associations with corti-
cal thickness (Fig. 3A). Although the association between cortical fold-
ing and activity changes within fM1 and from fM2 to fM1 reached signif-
icance, correlations were overall relatively weak (Fig. 3B). Importantly,
the correlations between structural gradients and AfMPA were robust
after correcting gradient values for cortical thickness and folding, both
for the model based on sG1 only (Fig. 3C) and for the model based on
both sG1 and sG2 (Fig. 3D), suggesting that structural connectome orga-
nization contains information about neural dynamics above and beyond
the information provided by local variation in cortical morphology.

3.5. Connectome topology analysis

The above findings suggest a reasonably strong structure-function
correspondence for functional transitions involving states anchored in
sensorimotor systems (i.e., within fM1, from fM1 to fM2, and from fM2
to fM1). However, there was no comparable prediction for states that
are linked to more transmodal regions. These findings are broadly in
line with previous findings showing stronger structure-function cou-
pling in unimodal than transmodal cortices (Park and Friston, 2013;
Vézquez-Rodriguez et al., 2019). To understand the underlying mecha-
nism of flexibility in more transmodal states, we next evaluated the rela-
tionship to network topology parameters describing long distance com-
munication between regions (Avena-Koenigsberger et al., 2019, 2018).
Contemporary views of cortical organization have highlighted that the
cortex is organized by an apparent rich-club structure, in which cer-
tain hub regions are more densely connected to themselves than to the
rest of the brain (Avena-Koenigsberger et al., 2019, 2018; Bullmore and
Sporns, 2009; van den Heuvel et al., 2012). We identified the rich-club
following established procedures (Fig. 4A). Rich-club nodes were lo-
cated at backbone structures and surrounded by feeder nodes, and local
nodes were located near sensorimotor areas (Fig. 4A). Notably, high
AfMPA was observed in local nodes for the transitions within fM1 and
from fM2 to fM1, while no differences were found within fM2 and from
fM1 to fM2, indicating that the transitions in sensorimotor-dominated
states primarily occurred in the locally-connected brain regions and
those in transmodal states occurred uniformly across either local or hub
nodes.

As a complementary information to rich-club taxonomy, we
stratified AfMPA according to structural connectivity distance
(Lariviere et al., 2019b; Oligschldger et al., 2019). Stratifying dy-
namic functional changes (AfMPA) with respect to connectivity
distance, we observed that transitions within fM1 or from fM2 to fM1
more frequently involved short-range connections, while those within
fM2 or from fM1 to fM2 involved long-range connections (Fig. 4B).
Shifts in AfMPA according to connectivity distance indicate that
marked transitions occurred along with the short-range connections for
low-level brain states, while transitions for the higher-order brain state
increasingly used long-range connections. Our results indicate that
transitions involving sensorimotor states traverse along the path with
short distances, while those in transmodal states engage long-range
connections across network hubs.
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We furthermore derived mean first-passage time and path length
from the structural connectome to assess structurally-governed network
communication (Avena-Koenigsberger et al., 2018; Goqi et al., 2014).
Interestingly, higher mean first-passage time was observed in transitions
within fM1 and from fM2 to fM1 compared to transitions from fM1 to
fM2 and within fM2. Similarly, higher path length was observed within
fM1, and it monotonically decreased in transitions between meta-states
and within fM2 (Fig. 4C). This analysis indicates different functional
states are associated to different structural communication mechanisms.
Specifically, communication in functional states localized in low-level
sensory areas is better explained by network diffusion. On the other
hand, functional states in transmodal regions are better explainable by
routing along shortest paths. Results for mean first-passage time and
path length were consistent when considering those brain regions of
the top 10, 15, and 20% AfMPA within and between meta-states (Fig.
S4). To further validate our findings using different graph parametriza-
tion methods, we calculated search information and path transitivity.
Higher search information was observed in transitions within fM1 and
monotonically decreased in transitions between meta-states and within
fM2. In contrast, higher path transitivity was observed within fM2 and
in transitions from fM1 to fM2 compared to fM1 (Fig. S5), suggesting
consistent results with mean first-passage time and path length.

3.6. Cortical hierarchy and functional dynamic transitions

To assess how the dynamic fluctuations of brain function change ac-
cording to contemporary views of cortical hierarchy (Fig. 5A), we first
computed the mean hierarchical level for each brain state based on hi-
erarchical system proposed by Marcel Mesulam (Mesulam, 1998). Brain
states in fM1 had a tendency for lower mean hierarchical levels than
those in fM2 (mean + SD = 1.70 + 1.10 vs. 2.61 + 1.14; t = -1.50,
one-tailed p = 0.08). Although the difference was not statistically sig-
nificant, this suggest that both meta-states may be involved in differ-
ent hierarchical levels, where dynamic functional states in fM1 were
anchored in lower levels of the hierarchy, while those in fM2 were an-
chored in higher levels (Fig. 5B). We aimed to understand the specific
features of cortical topology that underpinned this relationship by cal-
culating the proportion of rich-club nodes, connectivity distance, and
diffusion/routing communication ratio (i.e., ratio between mean first-
passage time and path length) within each of the four levels of the hier-
archy. Confirming the differentiation of our structure-function relation-
ships across the hierarchy, we observed a higher proportion of rich-
club nodes and longer connectivity distance in higher-order regions,
together with lower diffusion/routing communication ratio (Fig. 5C).
Importantly, beyond the location of states in the hierarchy, the magni-
tude of structure-function coupling (i.e., correlation between sG1 and
AfMPA) was strong when dynamic states changed within the low hi-
erarchical levels, between low- and high-level hierarchies, while the
coupling appeared weakest for dynamic transitions between high level
states (Fig. 5D). Together, this result supports our finding that structure-
function correspondence is strong when dynamic transitions involve
sensorimotor states and that correspondence decreases when transitions
are anchored in transmodal states.

3.7. Sensitivity and replication experiments

Repeating the above analysis across spatial scales (i.e., 100, 300, and
400 parcels), findings were highly consistent at parcel resolutions >100
(Fig. S6-8). Correlations between sG1 and AfMPA became somewhat
weaker at the lowest resolution of 100 parcels, indicating that more
granular parcellations may be more efficient for the study of associa-
tions between structural connectivity and functional dynamics. To as-
sess reproducibility, we performed the same analyses on the initially
held out Replication dataset from the HCP. We observed virtually iden-
tical patterns of structural connectome gradients, functional meta-states,
and structure-function associations (Fig. S9-10). Finally, main findings
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Fig. 3. Morphological associations. (A) Correlations between cortical thickness and AfMPA, showing scatter plots and spin test histograms. (B) Correlations between
cortical folding and AfMPA. (C) Correlations between AfMPA and sG1, corrected for cortical morphology. (D) Linear model between AfMPA and sG1 and sG2,
corrected for cortical morphology.
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Fig. 4. Connectome topology analysis. (A) AfMPA in terms of rich-club taxonomy. Rich-club coefficients according to different degree levels were reported on the
left side and the magnitudes of AfMPA of rich-club, feeder, and local nodes were reported on the right side. The error bars represent the standard deviation of AfMPA
across brain regions. (B) AfMPA in regard to connectivity distance. The connectivity distance was reported on the left side and the magnitudes of AfMPA according
to the connectivity distance were reported on the right side. (C) Mean first-passage time and path length with respect to the meta-state transitions. The error bars
indicate the standard deviation of network communication measures across transitions.

could be confirmed in the independent 3T dataset from our local site
that had slightly different imaging parameters as HCP (MICA-MTL) (Fig.
S11).

4, Discussion

Understanding how the structure of the cortex gives rise to ongoing
cognitive function is a key aim for systems neuroscience (Batista-Garcia-
Ramé and Ferndndez-Verdecia, 2018; Baum et al., 2020; Becker et al.,
2018; Ciric et al.,, 2017; Hermundstad et al., 2013; Honey et al.,
2009; Misic et al., 2016; Park and Friston, 2013; Rubinov et al., 2009;
Snyder and Bauer, 2019; Sudrez et al., 2020; Vazquez-Rodriguez et al.,
2019; Wang et al., 2019, 2015). Yet, it remains unclear how a hard-
wired neural architecture can give rise to flexible (i.e., time-varying)
neural dynamics. Our analysis established that low dimensional repre-
sentations of white matter connectivity are closely aligned with spa-
tiotemporal patterns of dynamic functional transitions between lower-
level sensorimotor states, and between lower-level and higher-order
transmodal states. Conversely, transitions between states anchored in
transmodal regions were not simply explained by structural connectome

organization. This apparent difference may occur because transitions be-
tween transmodal states preferentially related to subnetworks that com-
municate increasingly via a routing strategy involving long-range and
globally efficient connections. In contrast, sensorimotor state changes
were primarily explicable in terms of changes through local network
diffusion and implicated shorter connectivity distances. Findings were
robust across multiple sensitivity analyses and could be replicated in dif-
ferent datasets. Together, our work suggests that flexible neural dynam-
ics may rely on a balance between complementary features of structural
connectome organization: Local aspects of brain structure are important
for shifts between neural states anchored in sensorimotor cortex, and a
more distributed rich club architecture support transitions between neu-
ral states anchored in transmodal cortex.

Our study capitalized on manifold learning techniques applied to
structural connectome data, an approach that has recently gained trac-
tion in the neuroimaging and network neuroscience communities, as
it offers novel perspectives on dimensions of brain organization giving
rise to human cognition (Margulies et al., 2016; Vos de Wael et al.,
2020). While similar algorithms have been applied to microstructural
and functional connectivity data (Burt et al., 2018; Huntenburg et al.,
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Fig. 5. Transition patterns in terms of cortical hierarchy. (A) Hierarchical cortical organization according to a model of the cortical hierarchy developed in non-
human primates (Mesulam, 1998). (B) fMPA patterns weighted according to mean hierarchical levels. Red bars indicate the point that exhibited maximum fMPA
value. (C) Connectome topology analysis according to hierarchical levels. Proportion of rich-club nodes, connectivity distance, and network communication ratio
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2017; Margulies et al., 2016; Paquola et al., 2019; Shine et al., 2019;
Vos de Wael et al., 2020), they remained underexplored in the analysis
of dMRI-derived connectomes. Conceptual work has advocated for the
use of gradients to capture subregional heterogeneity and multiplicity
(Haak and Beckmann, 2020; Margulies et al., 2016), yet, only few ap-
plications leveraged manifold learning on dMRI tractography data and
these were mainly restricted to individual regions (Beckmann et al.,
2009; Cerliani et al., 2012) or specific lobes (Bajada et al., 2017), of-
ten to guide subregional parcellations. In contrast, directly analyzing
the low dimensional spaces obtained from dMRI data revealed that
these gradients can serve as a powerful coordinate system to visual-
ize and contextualize functional dynamics at macroscale. Similar to
classical sensory-transmodal gradients derived from myelin sensitive
MRI, as well as resting-state functional connectivity data (Hong et al.,
2019; Lariviere et al., 2019a; Margulies et al., 2016; Paquola et al.,
2019), dMRI gradients are anchored by sensory and motor systems, and
guided by spatial proximity. On the other hand, dMRI manifolds ap-

peared less specific to the transmodal and paralimbic system than rs-
fMRI and myelin sensitive measures, both of which capture spatially
distributed, potentially polysynaptic cortical systems, such as the de-
fault mode or frontoparietal network (Hong et al., 2019; Lariviére et al.,
2019a; Margulies et al., 2016; Paquola et al., 2019). Our study shows
that the application of gradient methods to dMRI metrics can com-
plement graph theoretical analyses, suggesting that including both ap-
proaches in future approaches could help refine our understanding of
structure-function relationships more generally.

Having delineated the principal dimensions of cortical structural
connectivity, we used these to interrogate the capacity of this mani-
fold to describe structure-function coupling. An increasing body of prior
work studied the correspondence between brain structure and function,
using statistical analyses (Messé et al., 2014; MiSic et al., 2016), com-
munication models (Goni et al., 2014; Misic¢ et al., 2015), biophysical
simulations (Breakspear, 2017; Deco et al., 2009; Honey et al., 2009;
Wang et al., 2019), and artificial intelligence (Rosenthal et al., 2018).
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Here, we expanded from prior work assuming stationarity in brain func-
tion by inferring time-varying functional states and their transitions
(Gotts et al., 2020; Hansen et al., 2015; Vidaurre et al., 2018, 2017)
using HMMs to describe dynamic neural changes that emerge during
wakeful rest. Our analysis highlighted a temporal hierarchy that re-
flects a division between low-level sensorimotor and higher-order trans-
modal states, replicating earlier applications of HMMs to resting-state
data (Vidaurre et al., 2017). Importantly, relating these distinct func-
tional states to structural connectome manifolds, we found that they
were uniquely related to complementary features of cortical organi-
zation. Structural connectome dimensions were particularly useful in
describing transitions between low-level functional states and between
low- and high-level states. On the other hand, they could not strongly
capture transitions within the transmodal regime, a pattern that echoes
prior findings that close relationships between structure and function ex-
ist in primary sensorimotor areas while the associations become increas-
ingly divergent in transmodal cortices (Park and Friston, 2013; Vazquez-
Rodriguez et al., 2019). Notably, structure-function coupling was more
marked for the first structural gradient, while the second gradient did
not reveal a significant association with function. However, when we
incorporated both gradients into a common linear regression, the sec-
ond gradient indeed improved model performance. A potential expla-
nation for these increases is the interaction between the first two gradi-
ents, which might come from continuously changing connectivity pat-
terns as well as potentially overlapping multiple gradients (Haak et al.,
2018; Haak and Beckmann, 2020). Topological parameterization based
on connectivity distance and rich-club taxonomy related the dynamic
functional findings to two important features of core-periphery distinc-
tion established by graph theoretical studies (de Reus and van den
Heuvel, 2013; Griffa and van den Heuvel, 2018; Liang et al., 2018;
Shu et al., 2018; van den Heuvel et al., 2012; Zhao et al., 2017). In fact,
dynamic transitions in the sensorimotor state-space engaged mainly
short- and intermediary-range connections, while transitions within the
higher-order meta-state increasingly occupied rich-club nodes that are
mutually interconnected by long-range connections. The differential oc-
cupation of nodes with a more regional versus a more large-scale con-
nectivity pattern in lower versus higher-order functional states may re-
flect different ways they related to large-scale brain dynamics, with
nodes involved in more segregated sensorimotor states having a more
localized connectivity profile while higher-order functions are orches-
trated by nodes with a more integrated connectivity profile. This con-
clusion is consistent with our application of connectome-informed com-
munication models, which assume functional signal transmission occurs
along structural network edges (Avena-Koenigsberger et al., 2019, 2018;
Goni et al., 2014). We established that sensorimotor states and their
transitions frequently involve decentralized mechanisms of network dif-
fusion, where signals diffuse locally without necessarily traversing along
the shortest possible paths. In contrast, functional transitions within the
transmodal regime increasingly leverage centralized, and globally effi-
cient, routing strategies to maintain long-range communication across
distributed hubs. These results, therefore, highlight that dynamic infor-
mation flow in the brain adheres to different modes of communication,
ranging from more decentralized network diffusion processes that run
within multiple parallel hierarchies anchored on specific sensorimotor
systems towards connector nodes on the one hand, and a more central-
ized and topology-sensitive routing mechanism that enables the brain-
wide integration of the information aggregated by these hubs in a glob-
ally efficient manner, on the other (Avena-Koenigsberger et al., 2019,
2018, 2014; Goni et al., 2014). Future work may determine whether
these different communication processes are mediated by different sig-
naling properties. A prior computational model of non-human primate
cortical dynamics that incorporated a gradient of synaptic excitation
suggested multiple temporal hierarchies across the cortex, with lower-
level sensorimotor areas involving fast signaling mechanisms while
higher-order cognitive areas demonstrated slow and integrated activ-
ity (Chaudhuri et al., 2015). In that study, hierarchical position was
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found to correlate with the number of synaptic spines representing a
plausible microcircuit substrate underlying an area’s capacity to en-
gage in integrative function. The current study adopted mean first-
passage time and path length, as well as search information and path
transitivity, to explore structurally-governed network communication
mechanisms underlying dynamic functional states. These metrics repre-
sent a spectrum of communication processes anchored on shortest path
communication (i.e., routing) at one extreme, and random walk pro-
cesses (i.e., diffusion) at the other extreme (Avena-Koenigsberger et al.,
2019, 2018). Communication models residing between these two ex-
tremes may include (i) communicability, which considers non-shortest
paths to characterize complex networks (Estrada and Hatano, 2008), (ii)
navigation, a decentralized network communication strategy that cap-
tures long and inefficient paths as well as shortest paths (Seguin et al.,
2019, 2018), and (iii) spreading models, which describe how local per-
turbations trigger global cascades (Misi¢ et al., 2015). These commu-
nication models may provide additional information for understand-
ing the correspondence of brain structure and function (Baum et al.,
2020; Hermundstad et al., 2013; Honey et al., 2009; Misic et al., 2016;
Osmanlioglu et al., 2019; Seguin et al., 2020; Snyder and Bauer, 2019;
Suarez et al., 2020; Vazquez-Rodriguez et al., 2019) beyond our cur-
rent findings based on diffusion and routing. An interesting future di-
rection to link brain structure and functional dynamics may capitalize
on asymmetric communication measures (Avena-Koenigsberger et al.,
2019, 2018; Gori et al., 2014, 2013; Rubinov and Sporns, 2010). A
recent study estimated send-receive communication asymmetry from
undirected structural connectome data, and found that this asymmetry
recapitulated functional gradients differentiating low-level sensory to
higher-order transmodal areas (Seguin et al., 2019). It may be of interest
to explore whether the asymmetric measures can further be associated
to communication mechanisms across different structurally-determined
and temporal hierarchies, particularly in transmodal networks and a
higher-order dynamic state space.

Our findings were consistent across different HCP subsamples and
could be replicated in an independent dataset. We also assessed the
consistency of our findings across different spatial scales. Findings were
consistent at parcellations with 200 and 300 parcels. We found fairly
consistent structure-function coupling, where transitions within senso-
rimotor state and between the meta-states showed high correlations.
Unlike the main findings based on 200 parcels, brain regions from 400
node parcellation showed non-significant correlation between sG1 and
transitions from fM1 to fM2, and significant correlation with transitions
within fM2. This discrepancy may be due to the parcellation approach,
which may potentially mix the fMRI signals from different set of ver-
tices. However, why the association between structural manifolds and
functional dynamics vary across different parcellation scales needs to be
investigated further.

Finally, we also re-expressed our main findings by leveraging a well-
established model of cortical hierarchical organization developed in
non-human primates (Mesulam, 1998). This model-based analysis con-
firmed that rich-club proportion, overall connectivity distance, and the
increasing use of network routing relative to diffusion increases along
the putative cortical hierarchy. Similarly, this analysis also established
how the coupling between structure and dynamic functional transitions
related to hierarchical levels. Local structural constraints on functional
dynamics may be particularly strong when state transitions involve low-
level cortical systems and when transitions involve bottom-up and top-
down changes in hierarchical levels, but they may not have such a tight
grip on transitions occurring within the higher-order regime of corti-
cal hierarchy. Contemporary perspectives on brain wide information
processing often focus on the process through which sensorimotor in-
puts gain access to a global workspace that allows these information
to be processed in an explicit conscious manner (Dehaene et al., 1998;
Mashour et al., 2020). It is possible that neural dynamics within higher
hierarchical levels increasingly engage polysynaptic mechanisms that al-
low for integrated and flexible processing, which ultimately allows for
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the implementation of adaptive control processes for which conscious
experience is argued to be important (Mesulam, 1990).

In sum, our study provides a novel perspective on one of the major
questions in systems neuroscience: How does the hard-wired structure
of the cortex support dynamic functional changes that are necessary for
flexible cognition? Our results suggest that this is achieved by balanc-
ing local and distant influences in structural constraints. We established
that dynamic modes of neural function that are closely linked to lower-
level sensorimotor systems are constrained by local features of cortex. In
contrast, neural function linked to transmodal regions emerge within a
set of constraints that reflect the long-range network routing. Our study,
thus, suggests that the wiring of the human brain implements local and
distal communication strategies, and that the balance of these two as-
pects of the structural connectome may be important in supporting both
specialized and integrated aspects of cognitive processing.
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