001     888032
005     20210130010757.0
024 7 _ |a 10.1038/s42003-020-0794-7
|2 doi
024 7 _ |a 2128/26239
|2 Handle
024 7 _ |a altmetric:77091037
|2 altmetric
024 7 _ |a pmid:32139786
|2 pmid
024 7 _ |a WOS:000519705500007
|2 WOS
037 _ _ |a FZJ-2020-04610
082 _ _ |a 570
100 1 _ |a Vos de Wael, Reinder
|0 P:(DE-HGF)0
|b 0
245 _ _ |a BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
260 _ _ |a London
|c 2020
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605806785_26137
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Benkarim, Oualid
|0 0000-0003-3922-7643
|b 1
700 1 _ |a Paquola, Casey
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lariviere, Sara
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Royer, Jessica
|0 0000-0002-4448-8998
|b 4
700 1 _ |a Tavakol, Shahin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Xu, Ting
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hong, Seok-Jun
|0 0000-0002-1847-578X
|b 7
700 1 _ |a Langs, Georg
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Valk, Sofie
|0 P:(DE-Juel1)173843
|b 9
700 1 _ |a Misic, Bratislav
|0 0000-0003-0307-2862
|b 10
700 1 _ |a Milham, Michael
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Margulies, Daniel
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Smallwood, Jonathan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Bernhardt, Boris C.
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1038/s42003-020-0794-7
|g Vol. 3, no. 1, p. 103
|0 PERI:(DE-600)2919698-X
|n 1
|p 103
|t Communications biology
|v 3
|y 2020
|x 2399-3642
856 4 _ |u https://juser.fz-juelich.de/record/888032/files/s42003-020-0794-7.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888032
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)173843
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21