000888067 001__ 888067
000888067 005__ 20240711085640.0
000888067 0247_ $$2doi$$a10.1111/jace.17544
000888067 0247_ $$2ISSN$$a0002-7820
000888067 0247_ $$2ISSN$$a1551-2916
000888067 0247_ $$2Handle$$a2128/26575
000888067 0247_ $$2altmetric$$aaltmetric:94479278
000888067 0247_ $$2WOS$$aWOS:000589529600001
000888067 037__ $$aFZJ-2020-04645
000888067 082__ $$a660
000888067 1001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b0$$eCorresponding author
000888067 245__ $$aProcessing of MAX phases: From synthesis to applications
000888067 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000888067 3367_ $$2DRIVER$$aarticle
000888067 3367_ $$2DataCite$$aOutput Types/Journal article
000888067 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608206777_29743
000888067 3367_ $$2BibTeX$$aARTICLE
000888067 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888067 3367_ $$00$$2EndNote$$aJournal Article
000888067 520__ $$aMAX phases are a large family of materials with more than 150 different compositions that have been extensively investigated during the last 25 years. They present a layered structure and a unique combination of properties, bridging the gap between metallic and ceramic properties. However, despite their excellent response of some compositions at high temperature—excellent oxidation resistance up to 1400°C under corrosive environment, good damage and radiation tolerance, thermal shock resistance, and self‐crack healing—their transfer to applications has been limited by three main factors: i) complexity of this large family of materials, ii) unavailability of highly pure commercial powders, and iii) extensive time to license products in strategic fields such as nuclear or aviation. In this article, the main properties and synthesis routes are reviewed, including solid state reaction methods, physical vapor deposition (PVD) techniques and molten salt processes. Emphasis is given to processing routes for developing different structures such as dense bulk samples, ceramic matrix composites, foams with different porosity, coatings by PVD and thermal spray technologies, and near net shaping by slip casting, injection molding, and additive manufacturing. Well‐known and novel potential applications are described such as structural materials for high temperature applications, protective coatings and bond‐coats for gas turbines, accident tolerant fuel cladding in nuclear power plants, solar receiver in concentrated solar power systems, electrical contacts, catalyst, and joining material. Finally, high impact investigations and future challenges are listed in order to facilitate the transfer of MAX phases to the market.
000888067 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000888067 588__ $$aDataset connected to CrossRef
000888067 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17544$$gp. jace.17544$$n2$$p659–690$$tJournal of the American Ceramic Society$$v104$$x1551-2916$$y2020
000888067 8564_ $$uhttps://juser.fz-juelich.de/record/888067/files/jace.17544.pdf$$yOpenAccess
000888067 8767_ $$d2020-11-19$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000888067 909CO $$ooai:juser.fz-juelich.de:888067$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000888067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b0$$kFZJ
000888067 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000888067 9141_ $$y2020
000888067 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-29
000888067 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888067 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2018$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-29$$wger
000888067 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888067 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000888067 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-29$$wger
000888067 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000888067 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000888067 9801_ $$aAPC
000888067 9801_ $$aFullTexts
000888067 980__ $$ajournal
000888067 980__ $$aVDB
000888067 980__ $$aUNRESTRICTED
000888067 980__ $$aI:(DE-Juel1)IEK-1-20101013
000888067 980__ $$aAPC
000888067 981__ $$aI:(DE-Juel1)IMD-2-20101013