000888081 001__ 888081
000888081 005__ 20210130010809.0
000888081 0247_ $$2doi$$a10.1007/978-3-030-55973-1_29
000888081 0247_ $$2Handle$$a2128/26273
000888081 020__ $$a978-3-030-55973-1
000888081 037__ $$aFZJ-2020-04658
000888081 1001_ $$0P:(DE-Juel1)145189$$aSchrödter, Tobias$$b0$$eCorresponding author$$ufzj
000888081 1112_ $$aTraffic and Granular Flow 2019$$cPamplona$$d2019-07-02 - 2019-07-05$$gTGF 2019$$wSpain
000888081 245__ $$aModeling of Position Finding in Waiting Processes on Platforms
000888081 260__ $$aCham$$bSpringer International Publishing$$c2020
000888081 300__ $$a233-240
000888081 3367_ $$2ORCID$$aCONFERENCE_PAPER
000888081 3367_ $$033$$2EndNote$$aConference Paper
000888081 3367_ $$2BibTeX$$aINPROCEEDINGS
000888081 3367_ $$2DRIVER$$aconferenceObject
000888081 3367_ $$2DataCite$$aOutput Types/Conference Paper
000888081 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1606225212_17526
000888081 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000888081 4900_ $$aSpringer Proceedings in Physics$$v252
000888081 520__ $$aThe distribution of passengers waiting for a train is one of the limiting factors when improving the performance of a train station, as it heavily influences the boarding and alighting times of trains. We introduce a probability-based model for the pedestrians' choice of a waiting position. Different factors as the geometry and the positions of other waiting pedestrians are taken into account. To assess the model, simulations on a simplified representation of a platform were used. The results of this simulation show good agreement with observations of previously conducted field studies.
000888081 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000888081 536__ $$0G:(DE-Juel-1)BMBF-DB001531$$aKapaKrit - Optimierung der Verkehrskapazität von Bahnhöfen im Krisen- und Katastrophenfall (BMBF-DB001531)$$cBMBF-DB001531$$x1
000888081 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000888081 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b1$$ufzj
000888081 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b2$$ufzj
000888081 773__ $$a10.1007/978-3-030-55973-1_29
000888081 8564_ $$uhttps://juser.fz-juelich.de/record/888081/files/TGF2019_065_original_v4.pdf$$yOpenAccess
000888081 909CO $$ooai:juser.fz-juelich.de:888081$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888081 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888081 9141_ $$y2020
000888081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145189$$aForschungszentrum Jülich$$b0$$kFZJ
000888081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b1$$kFZJ
000888081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b2$$kFZJ
000888081 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000888081 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000888081 980__ $$acontrib
000888081 980__ $$aVDB
000888081 980__ $$aUNRESTRICTED
000888081 980__ $$acontb
000888081 980__ $$aI:(DE-Juel1)IAS-7-20180321
000888081 9801_ $$aFullTexts