000888085 001__ 888085
000888085 005__ 20220930130258.0
000888085 0247_ $$2doi$$a10.3389/fnagi.2020.578037
000888085 0247_ $$2Handle$$a2128/26255
000888085 0247_ $$2altmetric$$aaltmetric:94197378
000888085 0247_ $$2pmid$$a33281597
000888085 0247_ $$2WOS$$aWOS:000592438600001
000888085 037__ $$aFZJ-2020-04662
000888085 082__ $$a610
000888085 1001_ $$0P:(DE-Juel1)174035$$aLi, Changhong$$b0$$ufzj
000888085 245__ $$aWhite Matter Microstructure Underlies the Effects of Sleep Quality and Life Stress on Depression Symptomatology in Older Adults
000888085 260__ $$aLausanne$$bFrontiers Research Foundation$$c2020
000888085 3367_ $$2DRIVER$$aarticle
000888085 3367_ $$2DataCite$$aOutput Types/Journal article
000888085 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606136613_28754
000888085 3367_ $$2BibTeX$$aARTICLE
000888085 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888085 3367_ $$00$$2EndNote$$aJournal Article
000888085 520__ $$aSleep complaints are the most prevalent syndromes in older adults, particularly in women. Moreover, they are frequently accompanied with a high level of depression and stress. Although several diffusion tensor imaging (DTI) studies reported associations between sleep quality and brain white matter (WM) microstructure, it is still unclear whether gender impacts the effect of sleep quality on structural alterations, and whether these alterations mediate the effects of sleep quality on emotional regulation. We included 389 older participants (176 females, age = 65.5 ± 5.5 years) from the 1000BRAINS project. Neuropsychological examinations covered the assessments of sleep quality, depressive symptomatology, current stress level, visual working memory, and selective attention ability. Based on the DTI dataset, the diffusion parameter maps, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), were calculated and normalized to a population-specific FA template. According to the global Pittsburgh Sleep Quality Index (PSQI), 119 poor sleepers (PSQI: 10∼17) and 120 good sleepers (PSQI: 3∼6) were identified. We conducted a two by two (good sleepers/poor sleepers) × (males/females) analysis of variance by using tract-based spatial statistics (TBSS) and JHU-ICBM WM atlas-based comparisons. Moreover, we performed a voxel-wise correlation analysis of brain WM microstructure with the neuropsychological tests. Finally, we applied a mediation analysis to explore if the brain WM microstructure mediates the relationship between sleep quality and emotional regulation. No significant differences in brain WM microstructure were detected on the main effect of sleep quality. However, the MD, AD, and RD of pontine crossing tract and bilateral inferior cerebellar peduncle were significant lower in the males than females. Voxel-wise correlation analysis revealed that FA and RD values in the corpus callosum were positively related with depressive symptomatology and negatively related with current stress levels. Additionally, we found a significantly positive association between higher FA values in visual-related WM tracts and better outcomes in a visual pattern recognition test. Furthermore, a mediation analysis suggested that diffusion metrics within the corpus callosum partially mediated the associations between poor sleep quality/high stress and depressive symptomatology.
000888085 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000888085 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000888085 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x2
000888085 588__ $$aDataset connected to CrossRef
000888085 7001_ $$0P:(DE-Juel1)169295$$aSchreiber, Jan$$b1
000888085 7001_ $$0P:(DE-Juel1)166110$$aBittner, Nora$$b2
000888085 7001_ $$0P:(DE-Juel1)167595$$aLi, Shumei$$b3
000888085 7001_ $$0P:(DE-HGF)0$$aHuang, Ruiwang$$b4
000888085 7001_ $$0P:(DE-HGF)0$$aMoebus, Susanne$$b5
000888085 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b6$$ufzj
000888085 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b7
000888085 7001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b8$$eCorresponding author
000888085 773__ $$0PERI:(DE-600)2558898-9$$a10.3389/fnagi.2020.578037$$gVol. 12, p. 578037$$p578037$$tFrontiers in aging neuroscience$$v12$$x1663-4365$$y2020
000888085 8564_ $$uhttps://juser.fz-juelich.de/record/888085/files/fnagi-12-578037.pdf$$yOpenAccess
000888085 8767_ $$82020-0285532-5$$d2020-11-20$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507.50 USD, Reporting 2020-10
000888085 909CO $$ooai:juser.fz-juelich.de:888085$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000888085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174035$$aForschungszentrum Jülich$$b0$$kFZJ
000888085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169295$$aForschungszentrum Jülich$$b1$$kFZJ
000888085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166110$$aForschungszentrum Jülich$$b2$$kFZJ
000888085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b6$$kFZJ
000888085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b7$$kFZJ
000888085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich$$b8$$kFZJ
000888085 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000888085 9141_ $$y2020
000888085 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-10-08
000888085 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888085 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT AGING NEUROSCI : 2018$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888085 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-10-08
000888085 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-08
000888085 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000888085 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000888085 980__ $$ajournal
000888085 980__ $$aVDB
000888085 980__ $$aUNRESTRICTED
000888085 980__ $$aI:(DE-Juel1)INM-2-20090406
000888085 980__ $$aI:(DE-Juel1)INM-1-20090406
000888085 980__ $$aAPC
000888085 9801_ $$aAPC
000888085 9801_ $$aFullTexts