001     888098
005     20210130010815.0
024 7 _ |a 10.25493/80YK-SN0
|2 doi
037 _ _ |a FZJ-2020-04675
100 1 _ |a Palomero-Gallagher, Nicola
|0 P:(DE-Juel1)131701
|b 0
|e Corresponding author
245 _ _ |a Probabilistic cytoarchitectonic map of Area p24ab (pACC) (v16.0)
260 _ _ |c 2019
|b Human Brain Project Neuroinformatics Platform
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1605867558_3626
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a This dataset contains the distinct probabilistic cytoarchitectonic map of Area p24ab (pACC) in the individual, single subject template of the MNI Colin 27 reference space. As part of the Julich-Brain cytoarchitectonic atlas, the area was identified using cytoarchitectonic analysis on cell-body-stained histological sections of 10 human postmortem brains obtained from the body donor program of the University of Düsseldorf. The results of the cytoarchitectonic analysis were then mapped to the reference space, where each voxel was assigned the probability to belong to Area p24ab (pACC). The probability map of Area p24ab (pACC) is provided in NifTi format for each hemisphere in the reference space. The Julich-Brain atlas relies on a modular, flexible and adaptive framework containing workflows to create the probabilistic brain maps for these structures. Note that methodological improvements and updated probability estimates for new brain structures may in some cases lead to measurable but negligible deviations of existing probability maps, as compared to earlier released datasets. Other available data versions of Area p24ab (pACC): Palomero-Gallagher et al. (2019) [Data set, v16.1] [DOI: 10.25493/DHXC-2KN](https://doi.org/10.25493%2FDHXC-2KN) The most probable delineation of Area p24ab (pACC) derived from the calculation of a maximum probability map of all currently released Julich-Brain brain structures can be found here: Amunts et al. (2019) [Data set, v1.18] [DOI: 10.25493/8EGG-ZAR](https://doi.org/10.25493%2F8EGG-ZAR) Amunts et al. (2020) [Data set, v2.2] [DOI: 10.25493/TAKY-64D](https://doi.org/10.25493%2FTAKY-64D)
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 1
700 1 _ |a Mohlberg, Hartmut
|0 P:(DE-Juel1)131660
|b 2
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 3
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 4
700 1 _ |a Zilles, Karl
|0 P:(DE-Juel1)131714
|b 5
773 _ _ |a 10.25493/80YK-SN0
909 C O |o oai:juser.fz-juelich.de:888098
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131701
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131714
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 1
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21