000888115 001__ 888115
000888115 005__ 20210130010820.0
000888115 0247_ $$2doi$$a10.1007/978-3-030-55973-1_5
000888115 0247_ $$2Handle$$a2128/26274
000888115 037__ $$aFZJ-2020-04690
000888115 1001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b0$$eCorresponding author$$ufzj
000888115 1112_ $$aTraffic and Granular Flow 2019$$cPamplona$$d2019-07-02 - 2019-07-05$$gTGF19$$wSpain
000888115 245__ $$aAnalysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries
000888115 260__ $$aCham$$bSpringer International Publishing$$c2019
000888115 300__ $$a39-44
000888115 3367_ $$2ORCID$$aCONFERENCE_PAPER
000888115 3367_ $$033$$2EndNote$$aConference Paper
000888115 3367_ $$2BibTeX$$aINPROCEEDINGS
000888115 3367_ $$2DRIVER$$aconferenceObject
000888115 3367_ $$2DataCite$$aOutput Types/Conference Paper
000888115 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1606225678_31232
000888115 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000888115 4900_ $$aSpringer Proceedings in Physics$$v252
000888115 520__ $$aVoronoi diagrams are an established method in the analysis of pedestrian motion for constructing a density from two-dimensional positions. It is in turn used to give pointwise values for speed, movement direction, flow etc. The method was first described for high-density situations inside a crowd moving in a simple geometry without considering the influence of walls. However, more complicated distance calculations are needed for more complicated geometries where there are several obstacles or corners. In addition, partially empty spaces also require special treatment to avoid excessively big cells. These problems can lead to estimation errors when not handled correctly in subsequent use. In this work, we give details on how to adapt the calculations of Voronoi diagrams to make them fit for the presence of walls and obstacles in complex geometries. Furthermore, we show how that for persons at the edge of a group the personal space can be reasonably restricted. Based on these modifications, having pointwise values for quantities of interest allows to give average values for arbitrary geometries, not just for lines or rectangles of measurements. However, in order to obtain reasonable measurement values, different quantities may need different kind of averages—arithmetic or harmonic, or weighted with density.
000888115 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000888115 536__ $$0G:(DE-Juel-1)HGF-DB001687$$aSISAME - SImulations for SAfety at Major Events (HGF-DB001687)$$cHGF-DB001687$$x1
000888115 7001_ $$0P:(DE-Juel1)180437$$aSteffen, Bernhard$$b1
000888115 7001_ $$0P:(DE-Juel1)159135$$aTordeux, Antoine$$b2
000888115 773__ $$a10.1007/978-3-030-55973-1_5
000888115 8564_ $$uhttps://juser.fz-juelich.de/record/888115/files/Chraibi2020_Chapter_AnalysisOfPedestrianMotionUsin.pdf$$yOpenAccess
000888115 909CO $$ooai:juser.fz-juelich.de:888115$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b0$$kFZJ
000888115 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000888115 9141_ $$y2020
000888115 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888115 920__ $$lyes
000888115 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000888115 980__ $$acontrib
000888115 980__ $$aVDB
000888115 980__ $$aUNRESTRICTED
000888115 980__ $$acontb
000888115 980__ $$aI:(DE-Juel1)IAS-7-20180321
000888115 9801_ $$aFullTexts