000888120 001__ 888120 000888120 005__ 20210130010821.0 000888120 0247_ $$2doi$$a10.1007/978-3-030-55973-1_3 000888120 0247_ $$2Handle$$a2128/26272 000888120 037__ $$aFZJ-2020-04694 000888120 041__ $$aEnglish 000888120 1001_ $$0P:(DE-Juel1)132064$$aBoltes, Maik$$b0$$eCorresponding author$$ufzj 000888120 1112_ $$aTraffic and Granular Flow 2019$$cPamplona$$d2019-07-02 - 2019-07-05$$gTGF19$$wSpain 000888120 245__ $$aSmoothing Trajectories of People's Heads 000888120 260__ $$aCham$$bSpringer International Publishing$$c2020 000888120 300__ $$a21-29 000888120 3367_ $$2ORCID$$aCONFERENCE_PAPER 000888120 3367_ $$033$$2EndNote$$aConference Paper 000888120 3367_ $$2BibTeX$$aINPROCEEDINGS 000888120 3367_ $$2DRIVER$$aconferenceObject 000888120 3367_ $$2DataCite$$aOutput Types/Conference Paper 000888120 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1606224733_30806 000888120 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 000888120 4900_ $$aSpringer Proceedings in Physics$$v252 000888120 520__ $$aThis paper compares three methods for smoothing trajectories from controlled experiments to determine the main movement direction: central moving average, spline interpolation of inflection points, and moving convex hull. The often-used method of averaging needs an adaptation due to the velocity but nevertheless is less accurate than the others. The spline method gives best results for high to moderate velocities. The newly introduced method using convex hulls is very robust and offers especially for low velocities good results. Smoothing has a large influence on the calculation of pedestrians' velocity and thus on the course of the fundamental diagram. 000888120 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000888120 7001_ $$0P:(DE-Juel1)179143$$aPick, Jana$$b1$$ufzj 000888120 7001_ $$0P:(DE-Juel1)176639$$aKlein, Janine$$b2$$ufzj 000888120 773__ $$a10.1007/978-3-030-55973-1_3 000888120 8564_ $$uhttps://juser.fz-juelich.de/record/888120/files/boltes.pdf$$yOpenAccess 000888120 909CO $$ooai:juser.fz-juelich.de:888120$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132064$$aForschungszentrum Jülich$$b0$$kFZJ 000888120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179143$$aForschungszentrum Jülich$$b1$$kFZJ 000888120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176639$$aForschungszentrum Jülich$$b2$$kFZJ 000888120 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000888120 9141_ $$y2020 000888120 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000888120 920__ $$lyes 000888120 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0 000888120 980__ $$acontrib 000888120 980__ $$aVDB 000888120 980__ $$aUNRESTRICTED 000888120 980__ $$acontb 000888120 980__ $$aI:(DE-Juel1)IAS-7-20180321 000888120 9801_ $$aFullTexts