001     888120
005     20210130010821.0
024 7 _ |a 10.1007/978-3-030-55973-1_3
|2 doi
024 7 _ |a 2128/26272
|2 Handle
037 _ _ |a FZJ-2020-04694
041 _ _ |a English
100 1 _ |a Boltes, Maik
|0 P:(DE-Juel1)132064
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Traffic and Granular Flow 2019
|g TGF19
|c Pamplona
|d 2019-07-02 - 2019-07-05
|w Spain
245 _ _ |a Smoothing Trajectories of People's Heads
260 _ _ |a Cham
|c 2020
|b Springer International Publishing
300 _ _ |a 21-29
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1606224733_30806
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Springer Proceedings in Physics
|v 252
520 _ _ |a This paper compares three methods for smoothing trajectories from controlled experiments to determine the main movement direction: central moving average, spline interpolation of inflection points, and moving convex hull. The often-used method of averaging needs an adaptation due to the velocity but nevertheless is less accurate than the others. The spline method gives best results for high to moderate velocities. The newly introduced method using convex hulls is very robust and offers especially for low velocities good results. Smoothing has a large influence on the calculation of pedestrians' velocity and thus on the course of the fundamental diagram.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Pick, Jana
|0 P:(DE-Juel1)179143
|b 1
|u fzj
700 1 _ |a Klein, Janine
|0 P:(DE-Juel1)176639
|b 2
|u fzj
773 _ _ |a 10.1007/978-3-030-55973-1_3
856 4 _ |u https://juser.fz-juelich.de/record/888120/files/boltes.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888120
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176639
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21