000888147 001__ 888147
000888147 005__ 20230426083223.0
000888147 0247_ $$2doi$$a10.1103/PhysRevB.102.195138
000888147 0247_ $$2ISSN$$a0163-1829
000888147 0247_ $$2ISSN$$a0556-2805
000888147 0247_ $$2ISSN$$a1050-2947
000888147 0247_ $$2ISSN$$a1094-1622
000888147 0247_ $$2ISSN$$a1095-3795
000888147 0247_ $$2ISSN$$a1098-0121
000888147 0247_ $$2ISSN$$a1538-4446
000888147 0247_ $$2ISSN$$a1538-4489
000888147 0247_ $$2ISSN$$a1550-235X
000888147 0247_ $$2ISSN$$a2469-9950
000888147 0247_ $$2ISSN$$a2469-9969
000888147 0247_ $$2ISSN$$a2469-9977
000888147 0247_ $$2Handle$$a2128/26266
000888147 0247_ $$2altmetric$$aaltmetric:94788052
000888147 0247_ $$2WOS$$aWOS:000591182700003
000888147 037__ $$aFZJ-2020-04721
000888147 082__ $$a530
000888147 1001_ $$0P:(DE-Juel1)168584$$aWinkelmann, Miriam$$b0$$eCorresponding author$$ufzj
000888147 245__ $$aKerker mixing scheme for self-consistent muffin-tin based all-electron electronic structure calculations
000888147 260__ $$aWoodbury, NY$$bInst.$$c2020
000888147 3367_ $$2DRIVER$$aarticle
000888147 3367_ $$2DataCite$$aOutput Types/Journal article
000888147 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608045779_28323
000888147 3367_ $$2BibTeX$$aARTICLE
000888147 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888147 3367_ $$00$$2EndNote$$aJournal Article
000888147 520__ $$aWe propose a computationally efficient Kerker mixing scheme for robust and rapidly converging self-consistent-field calculations using all-electron first-principles electronic structure methods based on the muffin-tin partitioning of space. The mixing scheme is composed of the Kerker preconditioner in combination with quasi-Newton methods. We construct the Kerker preconditioner in the muffin-tin sphere by determining the screened Coulomb potential in real space, solving a modified Helmholtz equation by adopting Weinert's pseudocharge method for calculating the Poisson equation for periodic charge densities without shape approximation to the solution of the modified Helmholtz equation. Implemented in a full-potential linearized augmented plane-wave (FLAPW) method, we found that the Kerker preconditioning scheme (i) leads to a convergence to self-consistency that is independent of system size, (ii) is extremely robust in the choice of the mixing and preconditioning parameters, (iii) scales linearly with system size in computational cost, and (iv) conserves the total charge. We have related the preconditioning parameter to the density of states of the delocalized electrons at the Fermi energy and developed a model to choose the preconditioning parameter either prior to the calculation or on the fly. Our computationally validated model supports the hypothesis that, in the absence of Kerker preconditioning, the delocalized s and p electrons of simple and transition metals are the primary cause for the slowing of the convergence speed and that the stronger, localized d and f electrons account for only a small fraction of the charge sloshing problem. The presented formulation of the Kerker preconditioning scheme establishes an efficient methodology for the simulation of magnetic and nonmagnetic metallic large-scale material systems by means of muffin-tin-based all-electron methods.
000888147 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000888147 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000888147 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x2
000888147 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000888147 542__ $$2Crossref$$i2020-11-20$$uhttps://link.aps.org/licenses/aps-default-license
000888147 588__ $$aDataset connected to CrossRef
000888147 7001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b1
000888147 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b2
000888147 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b3
000888147 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.102.195138$$bAmerican Physical Society (APS)$$d2020-11-20$$n19$$p195138$$tPhysical Review B$$v102$$x2469-9950$$y2020
000888147 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.102.195138$$gVol. 102, no. 19, p. 195138$$n19$$p195138$$tPhysical review / B$$v102$$x2469-9950$$y2020
000888147 8564_ $$uhttps://juser.fz-juelich.de/record/888147/files/PhysRevB.102.195138.pdf$$yOpenAccess
000888147 909CO $$ooai:juser.fz-juelich.de:888147$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168584$$aForschungszentrum Jülich$$b0$$kFZJ
000888147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b1$$kFZJ
000888147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b2$$kFZJ
000888147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b3$$kFZJ
000888147 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000888147 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000888147 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x2
000888147 9141_ $$y2020
000888147 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000888147 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000888147 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888147 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000888147 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000888147 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000888147 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000888147 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000888147 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000888147 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x4
000888147 980__ $$ajournal
000888147 980__ $$aVDB
000888147 980__ $$aI:(DE-Juel1)IAS-1-20090406
000888147 980__ $$aI:(DE-Juel1)PGI-1-20110106
000888147 980__ $$aI:(DE-82)080009_20140620
000888147 980__ $$aI:(DE-82)080012_20140620
000888147 980__ $$aI:(DE-Juel1)JSC-20090406
000888147 980__ $$aUNRESTRICTED
000888147 9801_ $$aFullTexts
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/18/12/009
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1090/S0025-5718-1965-0198670-6
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1145/321296.321305
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0009-2614(80)80396-4
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.540030413
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/17/13/525
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.30.6118
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.34.8391
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.38.12807
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0927-0256(96)00008-0
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jcph.1996.0059
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.075114
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3574836
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1137/120880604
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.25.4260
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(98)00202-1
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(02)00736-1
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2320/matertrans.45.1422
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.045126
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.23.3082
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0167-7977(89)90002-6
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.17953
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758
000888147 999C5 $$1V. Eyert$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-25864-0$$y2013
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2019.107065
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/14/11/304
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0965-0393/16/3/035004
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.524800
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.28.5462
000888147 999C5 $$1J. Lindhard$$2Crossref$$oJ. Lindhard 1954$$y1954
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.12.4012
000888147 999C5 $$1N. Ashcroft$$2Crossref$$oN. Ashcroft Solid State Physics 1976$$tSolid State Physics$$y1976
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.11429/ppmsj1919.17.0_48
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.235118
000888147 999C5 $$1M. Abramowitz$$2Crossref$$oM. Abramowitz Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1964$$tHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables$$y1964
000888147 999C5 $$1G. Arfken$$2Crossref$$oG. Arfken Mathematical Methods for Physicists: A Comprehensive Guide 2013$$tMathematical Methods for Physicists: A Comprehensive Guide$$y2013
000888147 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-4-121-1