001     888147
005     20230426083223.0
024 7 _ |a 10.1103/PhysRevB.102.195138
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 2128/26266
|2 Handle
024 7 _ |a altmetric:94788052
|2 altmetric
024 7 _ |a WOS:000591182700003
|2 WOS
037 _ _ |a FZJ-2020-04721
082 _ _ |a 530
100 1 _ |a Winkelmann, Miriam
|0 P:(DE-Juel1)168584
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Kerker mixing scheme for self-consistent muffin-tin based all-electron electronic structure calculations
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1608045779_28323
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose a computationally efficient Kerker mixing scheme for robust and rapidly converging self-consistent-field calculations using all-electron first-principles electronic structure methods based on the muffin-tin partitioning of space. The mixing scheme is composed of the Kerker preconditioner in combination with quasi-Newton methods. We construct the Kerker preconditioner in the muffin-tin sphere by determining the screened Coulomb potential in real space, solving a modified Helmholtz equation by adopting Weinert's pseudocharge method for calculating the Poisson equation for periodic charge densities without shape approximation to the solution of the modified Helmholtz equation. Implemented in a full-potential linearized augmented plane-wave (FLAPW) method, we found that the Kerker preconditioning scheme (i) leads to a convergence to self-consistency that is independent of system size, (ii) is extremely robust in the choice of the mixing and preconditioning parameters, (iii) scales linearly with system size in computational cost, and (iv) conserves the total charge. We have related the preconditioning parameter to the density of states of the delocalized electrons at the Fermi energy and developed a model to choose the preconditioning parameter either prior to the calculation or on the fly. Our computationally validated model supports the hypothesis that, in the absence of Kerker preconditioning, the delocalized s and p electrons of simple and transition metals are the primary cause for the slowing of the convergence speed and that the stronger, localized d and f electrons account for only a small fraction of the charge sloshing problem. The presented formulation of the Kerker preconditioning scheme establishes an efficient methodology for the simulation of magnetic and nonmagnetic metallic large-scale material systems by means of muffin-tin-based all-electron methods.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 2
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 2
542 _ _ |i 2020-11-20
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Di Napoli, Edoardo
|0 P:(DE-Juel1)144723
|b 1
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 2
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 3
773 1 8 |a 10.1103/physrevb.102.195138
|b American Physical Society (APS)
|d 2020-11-20
|n 19
|p 195138
|3 journal-article
|2 Crossref
|t Physical Review B
|v 102
|y 2020
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.102.195138
|g Vol. 102, no. 19, p. 195138
|0 PERI:(DE-600)2844160-6
|n 19
|p 195138
|t Physical review / B
|v 102
|y 2020
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/888147/files/PhysRevB.102.195138.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888147
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168584
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144723
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131042
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1088/0022-3719/18/12/009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1090/S0025-5718-1965-0198670-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1145/321296.321305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0009-2614(80)80396-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/jcc.540030413
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0305-4470/17/13/525
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.30.6118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.34.8391
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.38.12807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0927-0256(96)00008-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.11169
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1006/jcph.1996.0059
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.075114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3574836
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1137/120880604
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.25.4260
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0010-4655(98)00202-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0010-4655(02)00736-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.2320/matertrans.45.1422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.045126
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.23.3082
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0167-7977(89)90002-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.17953
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.1758
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-642-25864-0
|1 V. Eyert
|2 Crossref
|9 -- missing cx lookup --
|y 2013
999 C 5 |a 10.1016/j.cpc.2019.107065
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/14/11/304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0965-0393/16/3/035004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.524800
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.28.5462
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Lindhard
|y 1954
|2 Crossref
|o J. Lindhard 1954
999 C 5 |a 10.1103/PhysRevB.12.4012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 N. Ashcroft
|y 1976
|2 Crossref
|t Solid State Physics
|o N. Ashcroft Solid State Physics 1976
999 C 5 |a 10.11429/ppmsj1919.17.0_48
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.235118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 M. Abramowitz
|y 1964
|2 Crossref
|t Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
|o M. Abramowitz Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1964
999 C 5 |1 G. Arfken
|y 2013
|2 Crossref
|t Mathematical Methods for Physicists: A Comprehensive Guide
|o G. Arfken Mathematical Methods for Physicists: A Comprehensive Guide 2013
999 C 5 |a 10.17815/jlsrf-4-121-1
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21