001     888151
005     20240529111749.0
037 _ _ |a FZJ-2020-04725
041 _ _ |a English
100 1 _ |a Hussein, Mai
|0 P:(DE-Juel1)169789
|b 0
|u fzj
111 2 _ |a Joint European Magnetic Symposia 2020 Virtual Conference
|g JEMS
|c Abreu Events, Lisbon Office
|d 2020-12-07 - 2020-12-11
|w Portugal
245 _ _ |a THERMAL CONTROL OF MAGNETIC PHASE TRANSFORMATIONS THROUGH ACTIVE INTERFACES
260 _ _ |c 2020
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1606133702_27391
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Oxide heterostructures possess a wide range of electrical and magnetic properties arising, in particular, via interactions across their interfaces. Iron oxides generally and Fe3O4 particularly have a multitude of electric and magnetic functionalities which makes them interesting candidates for magnetic applications and heterogeneous catalysis. Controlling the oxide-interfaces opens additional manufacturing possibilities for functional devices. Moreover, switching between the different functional phases of iron oxides may open up novel routes to control and tune magnetic states via thermal phase design. It is therefore, our primary goal to understand, control, and tune the interface properties of Fe3O4/SrTiO3 and Fe3O4/YSZ heterostructures. In this study, using hard X-ray photoelectron spectroscopy (HAXPES), we demonstrate phase transformations from Fe3O4 to either 𝛾-Fe2O3 or FeO through active redox reactions across three relevant interfaces, i.e. (1) the outside atmosphere/Fe𝑥O𝑦 film interface, (2) the interface between phase-transformed Fe𝑥O𝑦/Fe𝑥O𝑦 intralayers and (3) the Fe𝑥O𝑦/oxide substrate interface. We find that the "active" oxide substrates (SrTiO3 or YSZ) play an important role as an additional oxygen supplier or scavenger. This leads to a clear alteration of the standard temperature-pressure phase diagram of iron oxides. Accordingly, we calculate the effective oxygen pressure through the interfaces and adjust the phase diagram. Moreover, using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular and linear dichroism (XMCD and XMLD), we monitor the local distortion and the orbital character of the Fe sites in the iron oxides thin films. Our findings allow us not only to control the interfaces but more importantly, to tune their physical functionalities by a controlled thermal phase design, giving access to far from equilibrium phases.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 1
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 2
536 _ _ |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)
|0 G:(DE-HGF)POF3-6213
|c POF3-621
|f POF III
|x 3
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 4
700 1 _ |a Müller, Martina
|0 P:(DE-Juel1)130854
|b 1
|u fzj
700 1 _ |a Mueller, David N.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Petracic, Oleg
|0 P:(DE-Juel1)145895
|b 3
|u fzj
700 1 _ |a Elnaggar, Hebatalla
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brückel, Thomas
|0 P:(DE-Juel1)130572
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:888151
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169789
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130854
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145895
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21