000888184 001__ 888184
000888184 005__ 20240712100902.0
000888184 0247_ $$2doi$$a10.5194/acp-20-14273-2020
000888184 0247_ $$2ISSN$$a1680-7316
000888184 0247_ $$2ISSN$$a1680-7324
000888184 0247_ $$2Handle$$a2128/26308
000888184 0247_ $$2altmetric$$aaltmetric:94837791
000888184 0247_ $$2WOS$$aWOS:000591833100002
000888184 037__ $$aFZJ-2020-04746
000888184 082__ $$a550
000888184 1001_ $$0P:(DE-Juel1)171206$$aHanumanthu, Sreeharsha$$b0$$eCorresponding author
000888184 245__ $$aStrong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills
000888184 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000888184 3367_ $$2DRIVER$$aarticle
000888184 3367_ $$2DataCite$$aOutput Types/Journal article
000888184 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608728027_12876
000888184 3367_ $$2BibTeX$$aARTICLE
000888184 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888184 3367_ $$00$$2EndNote$$aJournal Article
000888184 520__ $$aThe South Asian summer monsoon is associatedwith a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS), which confines the airmass inside. During boreal summer, the confinement of thisair mass leads to an accumulation of aerosol between about13 and 18 km (360 and 440 K potential temperature); thisaccumulation of aerosol constitutes the Asian TropopauseAerosol Layer (ATAL). We present balloon-borne aerosolbackscatter measurements of the ATAL performed by theCompact Optical Backscatter Aerosol Detector (COBALD)instrument in Nainital in northern India in August 2016,and compare these with COBALD measurements in thepost-monsoon time in November 2016. The measurementsdemonstrate a strong variability of the ATAL’s altitude, vertical extent, aerosol backscatter intensity and cirrus cloudoccurrence frequency. Such a variability cannot be deducedfrom climatological means of the ATAL as they are derivedfrom satellite measurements. To explain this observed variability we performed a Lagrangian back-trajectory analysisusing the Chemical Lagrangian Model of the Stratosphere(CLaMS). We identify the transport pathways as well as thesource regions of air parcels contributing to the ATAL overNainital in August 2016. Our analysis reveals a variety offactors contributing to the observed day-to-day variability ofthe ATAL: continental convection, tropical cyclones (maritime convection), dynamics of the anticyclone and strato-spheric intrusions. Thus, the air in the ATAL is a mixture ofair masses coming from different atmospheric altitude layers. In addition, contributions from the model boundary layeroriginate in different geographic source regions. The location of the strongest updraft along the backward trajectoriesreveals a cluster of strong upward transport at the southernedge of the Himalayan foothills. From the top of the convective outflow level (about 13 km; 360 K) the air parcels ascendslowly to ATAL altitudes within a large-scale upward spiral driven by the diabatic heating in the anticyclonic flow ofthe South Asian summer monsoon at UTLS altitudes. Caseswith a strong ATAL typically show boundary layer contributions from the Tibetan Plateau, the foothills of the Hi-malayas and other continental regions below the Asian monsoon. Weaker ATAL cases show higher contributions fromthe maritime boundary layer, often related to tropical cyclones, indicating a mixing of clean maritime and pollutedcontinental air. On the one hand increasing anthropogenicemissions in the future are expected due to the strong growthof Asian economies; on the other hand the implementationof new emission control measures (in particular in China)has reduced the anthropogenic emissions of some pollutantscontributing to the ATAL substantially. It needs to be monitored in the future whether the thickness and intensity of theATAL will further increase, which will likely impact the surface climate.
000888184 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000888184 536__ $$0G:(EU-Grant)603557$$aSTRATOCLIM - Stratospheric and upper tropospheric processes for better climate predictions (603557)$$c603557$$fFP7-ENV-2013-two-stage$$x1
000888184 588__ $$aDataset connected to CrossRef
000888184 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b1$$eCorresponding author
000888184 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b2
000888184 7001_ $$0P:(DE-HGF)0$$aBrunamonti, Simone$$b3
000888184 7001_ $$00000-0003-4442-0755$$aFadnavis, Suvarna$$b4
000888184 7001_ $$0P:(DE-Juel1)173997$$aLi, Dan$$b5
000888184 7001_ $$0P:(DE-HGF)0$$aÖlsner, Peter$$b6
000888184 7001_ $$00000-0002-4597-1690$$aNaja, Manish$$b7
000888184 7001_ $$00000-0003-3877-6800$$aSingh, Bhupendra Bahadur$$b8
000888184 7001_ $$0P:(DE-HGF)0$$aKumar, Kunchala Ravi$$b9
000888184 7001_ $$0P:(DE-HGF)0$$aSonbawne, Sunil$$b10
000888184 7001_ $$0P:(DE-HGF)0$$aJauhiainen, Hannu$$b11
000888184 7001_ $$00000-0003-1223-3429$$aVömel, Holger$$b12
000888184 7001_ $$0P:(DE-HGF)0$$aLuo, Beiping$$b13
000888184 7001_ $$0P:(DE-HGF)0$$aJorge, Teresa$$b14
000888184 7001_ $$0P:(DE-HGF)0$$aWienhold, Frank G.$$b15
000888184 7001_ $$0P:(DE-HGF)0$$aDirkson, Ruud$$b16
000888184 7001_ $$0P:(DE-HGF)0$$aPeter, Thomas$$b17
000888184 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-14273-2020$$gVol. 20, no. 22, p. 14273 - 14302$$n22$$p14273 - 14302$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000888184 8564_ $$uhttps://juser.fz-juelich.de/record/888184/files/invoice_Helmholtz-PUC-2020-122.pdf
000888184 8564_ $$uhttps://juser.fz-juelich.de/record/888184/files/acp-20-14273-2020.pdf$$yOpenAccess
000888184 8767_ $$8Helmholtz-PUC-2020-122$$92020-12-23$$d2021-01-05$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200161460
000888184 909CO $$ooai:juser.fz-juelich.de:888184$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000888184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171206$$aForschungszentrum Jülich$$b0$$kFZJ
000888184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b1$$kFZJ
000888184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b2$$kFZJ
000888184 9101_ $$0I:(DE-HGF)0$$60000-0003-4442-0755$$a IITM$$b4
000888184 9101_ $$0I:(DE-HGF)0$$60000-0003-4442-0755$$aExternal Institute$$b4$$kExtern
000888184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b17$$kExtern
000888184 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH $$b17
000888184 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000888184 9141_ $$y2020
000888184 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000888184 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888184 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888184 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000888184 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000888184 920__ $$lyes
000888184 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000888184 9801_ $$aFullTexts
000888184 980__ $$ajournal
000888184 980__ $$aVDB
000888184 980__ $$aI:(DE-Juel1)IEK-7-20101013
000888184 980__ $$aUNRESTRICTED
000888184 980__ $$aAPC
000888184 981__ $$aI:(DE-Juel1)ICE-4-20101013