001     888184
005     20240712100902.0
024 7 _ |a 10.5194/acp-20-14273-2020
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/26308
|2 Handle
024 7 _ |a altmetric:94837791
|2 altmetric
024 7 _ |a WOS:000591833100002
|2 WOS
037 _ _ |a FZJ-2020-04746
082 _ _ |a 550
100 1 _ |a Hanumanthu, Sreeharsha
|0 P:(DE-Juel1)171206
|b 0
|e Corresponding author
245 _ _ |a Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills
260 _ _ |a Katlenburg-Lindau
|c 2020
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1608728027_12876
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The South Asian summer monsoon is associatedwith a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS), which confines the airmass inside. During boreal summer, the confinement of thisair mass leads to an accumulation of aerosol between about13 and 18 km (360 and 440 K potential temperature); thisaccumulation of aerosol constitutes the Asian TropopauseAerosol Layer (ATAL). We present balloon-borne aerosolbackscatter measurements of the ATAL performed by theCompact Optical Backscatter Aerosol Detector (COBALD)instrument in Nainital in northern India in August 2016,and compare these with COBALD measurements in thepost-monsoon time in November 2016. The measurementsdemonstrate a strong variability of the ATAL’s altitude, vertical extent, aerosol backscatter intensity and cirrus cloudoccurrence frequency. Such a variability cannot be deducedfrom climatological means of the ATAL as they are derivedfrom satellite measurements. To explain this observed variability we performed a Lagrangian back-trajectory analysisusing the Chemical Lagrangian Model of the Stratosphere(CLaMS). We identify the transport pathways as well as thesource regions of air parcels contributing to the ATAL overNainital in August 2016. Our analysis reveals a variety offactors contributing to the observed day-to-day variability ofthe ATAL: continental convection, tropical cyclones (maritime convection), dynamics of the anticyclone and strato-spheric intrusions. Thus, the air in the ATAL is a mixture ofair masses coming from different atmospheric altitude layers. In addition, contributions from the model boundary layeroriginate in different geographic source regions. The location of the strongest updraft along the backward trajectoriesreveals a cluster of strong upward transport at the southernedge of the Himalayan foothills. From the top of the convective outflow level (about 13 km; 360 K) the air parcels ascendslowly to ATAL altitudes within a large-scale upward spiral driven by the diabatic heating in the anticyclonic flow ofthe South Asian summer monsoon at UTLS altitudes. Caseswith a strong ATAL typically show boundary layer contributions from the Tibetan Plateau, the foothills of the Hi-malayas and other continental regions below the Asian monsoon. Weaker ATAL cases show higher contributions fromthe maritime boundary layer, often related to tropical cyclones, indicating a mixing of clean maritime and pollutedcontinental air. On the one hand increasing anthropogenicemissions in the future are expected due to the strong growthof Asian economies; on the other hand the implementationof new emission control measures (in particular in China)has reduced the anthropogenic emissions of some pollutantscontributing to the ATAL substantially. It needs to be monitored in the future whether the thickness and intensity of theATAL will further increase, which will likely impact the surface climate.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |a STRATOCLIM - Stratospheric and upper tropospheric processes for better climate predictions (603557)
|0 G:(EU-Grant)603557
|c 603557
|f FP7-ENV-2013-two-stage
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vogel, Bärbel
|0 P:(DE-Juel1)129164
|b 1
|e Corresponding author
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 2
700 1 _ |a Brunamonti, Simone
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fadnavis, Suvarna
|0 0000-0003-4442-0755
|b 4
700 1 _ |a Li, Dan
|0 P:(DE-Juel1)173997
|b 5
700 1 _ |a Ölsner, Peter
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Naja, Manish
|0 0000-0002-4597-1690
|b 7
700 1 _ |a Singh, Bhupendra Bahadur
|0 0000-0003-3877-6800
|b 8
700 1 _ |a Kumar, Kunchala Ravi
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Sonbawne, Sunil
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Jauhiainen, Hannu
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Vömel, Holger
|0 0000-0003-1223-3429
|b 12
700 1 _ |a Luo, Beiping
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Jorge, Teresa
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Wienhold, Frank G.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Dirkson, Ruud
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Peter, Thomas
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.5194/acp-20-14273-2020
|g Vol. 20, no. 22, p. 14273 - 14302
|0 PERI:(DE-600)2069847-1
|n 22
|p 14273 - 14302
|t Atmospheric chemistry and physics
|v 20
|y 2020
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/888184/files/invoice_Helmholtz-PUC-2020-122.pdf
856 4 _ |u https://juser.fz-juelich.de/record/888184/files/acp-20-14273-2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888184
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171206
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129138
910 1 _ |a IITM
|0 I:(DE-HGF)0
|b 4
|6 0000-0003-4442-0755
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0003-4442-0755
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-HGF)0
910 1 _ |a ETH
|0 I:(DE-HGF)0
|b 17
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2018
|d 2020-09-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-09-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21