000888188 001__ 888188
000888188 005__ 20220930130258.0
000888188 0247_ $$2doi$$a10.1190/geo2020-0067.1
000888188 0247_ $$2ISSN$$a0016-8033
000888188 0247_ $$2ISSN$$a1942-2156
000888188 0247_ $$2Handle$$a2128/26365
000888188 0247_ $$2WOS$$aWOS:000618326800023
000888188 037__ $$aFZJ-2020-04750
000888188 082__ $$a550
000888188 1001_ $$0P:(DE-Juel1)169315$$aZhou, Zhen$$b0$$eCorresponding author
000888188 245__ $$a3D aquifer characterization of the Hermalle-sous-Argenteau test site using crosshole ground-penetrating radar amplitude analysis and full-waveform inversion
000888188 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2020
000888188 3367_ $$2DRIVER$$aarticle
000888188 3367_ $$2DataCite$$aOutput Types/Journal article
000888188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607262520_14040
000888188 3367_ $$2BibTeX$$aARTICLE
000888188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888188 3367_ $$00$$2EndNote$$aJournal Article
000888188 520__ $$aTo improve the understanding of flow and transport processes in the critical zone, high-resolution and accurate estimation of the small-scale heterogeneity is essential. Preferential flow paths related to high-porosity layers and clay lenses in gravel aquifers greatly affect flow and transport processes in the subsurface, and their high electrical contrast to their surrounding matrix and limited extent can act as low-velocity electromagnetic waveguides. In the past decade, time-domain full-waveform inversion (FWI) of crosshole ground-penetrating radar (GPR) data has shown to provide 2D decimeter-scale resolution images of relative permittivity and electrical conductivity of the subsurface, which can be related to porosity and soil texture. Most studies using crosshole GPR FWI resolved high-porosity zones that were identified by an amplitude analysis approach. But clay lenses or zones with higher electrical conductivity that act as low-velocity waveguides are hard to distinguish in the measured data and amplitude analysis because of the absence of characteristic wave-propagation features. We have investigated a set of nine crosshole GPR data sets from a test site in Hermalle-sous-Argenteau near the Meuse River in Belgium to characterize the aquifer within a decimeter-scale resolution and to improve the understanding of a previously performed heat tracer experiment. Thereby, we extend the amplitude analysis to identify two different types of low-velocity waveguides either caused by an increased porosity or a higher electrical conductivity (and higher porosity). Combining the GPR amplitude analysis for low-velocity waveguide zones with the standard FWI results provided information on waveguide zones, which modified the starting models and further improved the FWI results. Moreover, an updated effective source wavelet is estimated based on the updated permittivity starting models. In comparison with the traditional FWI results, the updated FWI results present smaller gradient of the medium properties and smaller root-mean-squared error values in the final inversion results. The nine crosshole sections are used to generate a 3D image of the aquifer and allowed a detailed analysis of the porosity distribution along the different sections. Consistent structures of the permittivity and electrical conductivity show the robustness of the updated FWI results. The aquifer structures obtained by the FWI results agree with those results of the heat tracer experiment.
000888188 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000888188 588__ $$aDataset connected to CrossRef
000888188 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1
000888188 7001_ $$00000-0001-9522-1540$$aHermans, Thomas$$b2
000888188 7001_ $$0P:(DE-HGF)0$$aNguyen, Frédéric$$b3
000888188 7001_ $$0P:(DE-Juel1)169434$$aSchmäck, Jessica$$b4
000888188 7001_ $$0P:(DE-Juel1)173026$$aHaruzi, Peleg$$b5
000888188 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6
000888188 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b7
000888188 773__ $$0PERI:(DE-600)2033021-2$$a10.1190/geo2020-0067.1$$gVol. 85, no. 6, p. H133 - H148$$n6$$pH133 - H148$$tGeophysics$$v85$$x1942-2156$$y2020
000888188 8564_ $$uhttps://juser.fz-juelich.de/record/888188/files/Invoice_ORD6601.pdf
000888188 8564_ $$uhttps://juser.fz-juelich.de/record/888188/files/geo2020-0067.1%20%281%29-1.pdf
000888188 8564_ $$uhttps://juser.fz-juelich.de/record/888188/files/Revised_Geophysics_for_review_R2_clean.docx$$yOpenAccess
000888188 8767_ $$80001022821$$92020-11-18$$d2020-12-07$$ePage charges$$jZahlung erfolgt$$zUSD 1.650/ Belegnr. 1200160600
000888188 909CO $$ooai:juser.fz-juelich.de:888188$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000888188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169315$$aForschungszentrum Jülich$$b0$$kFZJ
000888188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b1$$kFZJ
000888188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169434$$aForschungszentrum Jülich$$b4$$kFZJ
000888188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173026$$aForschungszentrum Jülich$$b5$$kFZJ
000888188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000888188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b7$$kFZJ
000888188 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000888188 9141_ $$y2020
000888188 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000888188 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000888188 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000888188 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000888188 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000888188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888188 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYSICS : 2018$$d2020-08-29
000888188 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000888188 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000888188 920__ $$lyes
000888188 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000888188 980__ $$ajournal
000888188 980__ $$aVDB
000888188 980__ $$aUNRESTRICTED
000888188 980__ $$aI:(DE-Juel1)IBG-3-20101118
000888188 980__ $$aAPC
000888188 9801_ $$aAPC
000888188 9801_ $$aFullTexts