001     888188
005     20220930130258.0
024 7 _ |a 10.1190/geo2020-0067.1
|2 doi
024 7 _ |a 0016-8033
|2 ISSN
024 7 _ |a 1942-2156
|2 ISSN
024 7 _ |a 2128/26365
|2 Handle
024 7 _ |a WOS:000618326800023
|2 WOS
037 _ _ |a FZJ-2020-04750
082 _ _ |a 550
100 1 _ |a Zhou, Zhen
|0 P:(DE-Juel1)169315
|b 0
|e Corresponding author
245 _ _ |a 3D aquifer characterization of the Hermalle-sous-Argenteau test site using crosshole ground-penetrating radar amplitude analysis and full-waveform inversion
260 _ _ |a Alexandria, Va.
|c 2020
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607262520_14040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To improve the understanding of flow and transport processes in the critical zone, high-resolution and accurate estimation of the small-scale heterogeneity is essential. Preferential flow paths related to high-porosity layers and clay lenses in gravel aquifers greatly affect flow and transport processes in the subsurface, and their high electrical contrast to their surrounding matrix and limited extent can act as low-velocity electromagnetic waveguides. In the past decade, time-domain full-waveform inversion (FWI) of crosshole ground-penetrating radar (GPR) data has shown to provide 2D decimeter-scale resolution images of relative permittivity and electrical conductivity of the subsurface, which can be related to porosity and soil texture. Most studies using crosshole GPR FWI resolved high-porosity zones that were identified by an amplitude analysis approach. But clay lenses or zones with higher electrical conductivity that act as low-velocity waveguides are hard to distinguish in the measured data and amplitude analysis because of the absence of characteristic wave-propagation features. We have investigated a set of nine crosshole GPR data sets from a test site in Hermalle-sous-Argenteau near the Meuse River in Belgium to characterize the aquifer within a decimeter-scale resolution and to improve the understanding of a previously performed heat tracer experiment. Thereby, we extend the amplitude analysis to identify two different types of low-velocity waveguides either caused by an increased porosity or a higher electrical conductivity (and higher porosity). Combining the GPR amplitude analysis for low-velocity waveguide zones with the standard FWI results provided information on waveguide zones, which modified the starting models and further improved the FWI results. Moreover, an updated effective source wavelet is estimated based on the updated permittivity starting models. In comparison with the traditional FWI results, the updated FWI results present smaller gradient of the medium properties and smaller root-mean-squared error values in the final inversion results. The nine crosshole sections are used to generate a 3D image of the aquifer and allowed a detailed analysis of the porosity distribution along the different sections. Consistent structures of the permittivity and electrical conductivity show the robustness of the updated FWI results. The aquifer structures obtained by the FWI results agree with those results of the heat tracer experiment.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 1
700 1 _ |a Hermans, Thomas
|0 0000-0001-9522-1540
|b 2
700 1 _ |a Nguyen, Frédéric
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schmäck, Jessica
|0 P:(DE-Juel1)169434
|b 4
700 1 _ |a Haruzi, Peleg
|0 P:(DE-Juel1)173026
|b 5
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 7
773 _ _ |a 10.1190/geo2020-0067.1
|g Vol. 85, no. 6, p. H133 - H148
|0 PERI:(DE-600)2033021-2
|n 6
|p H133 - H148
|t Geophysics
|v 85
|y 2020
|x 1942-2156
856 4 _ |u https://juser.fz-juelich.de/record/888188/files/Invoice_ORD6601.pdf
856 4 _ |u https://juser.fz-juelich.de/record/888188/files/geo2020-0067.1%20%281%29-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888188/files/Revised_Geophysics_for_review_R2_clean.docx
909 C O |o oai:juser.fz-juelich.de:888188
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169434
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)173026
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYSICS : 2018
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21