001     888202
005     20210130010838.0
024 7 _ |a 10.1039/D0TC00946F
|2 doi
024 7 _ |a 2050-7526
|2 ISSN
024 7 _ |a 2050-7534
|2 ISSN
024 7 _ |a 2128/26286
|2 Handle
024 7 _ |a altmetric:83384258
|2 altmetric
024 7 _ |a WOS:000548739700013
|2 WOS
037 _ _ |a FZJ-2020-04756
082 _ _ |a 530
100 1 _ |a Sturmeit, Henning Maximilian
|0 0000-0003-4686-5360
|b 0
245 _ _ |a Molecular anchoring stabilizes low valence Ni( i )TPP on copper against thermally induced chemical changes
260 _ _ |a [London]
|c 2020
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606328176_29142
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many applications of molecular layers deposited on metal surfaces, ranging from single-atom catalysis to on-surface magnetochemistry and biosensing, rely on the use of thermal cycles to regenerate the pristine properties of the system. Thus, understanding the microscopic origin behind the thermal stability of organic/metal interfaces is fundamental for engineering reliable organic-based devices. Here, we study nickel porphyrin molecules on a copper surface as an archetypal system containing a metal center whose oxidation state can be controlled through the interaction with the metal substrate. We demonstrate that the strong molecule–surface interaction, followed by charge transfer at the interface, plays a fundamental role in the thermal stability of the layer by rigidly anchoring the porphyrin to the substrate. Upon thermal treatment, the molecules undergo an irreversible transition at 420 K, which is associated with an increase of the charge transfer from the substrate, mostly localized on the phenyl substituents, and a downward tilting of the latters without any chemical modification.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cojocariu, Iulia
|0 P:(DE-Juel1)176932
|b 1
700 1 _ |a Jugovac, Matteo
|0 P:(DE-Juel1)169309
|b 2
700 1 _ |a Cossaro, Albano
|0 0000-0002-8429-1727
|b 3
700 1 _ |a Verdini, Alberto
|0 0000-0001-8880-2080
|b 4
700 1 _ |a Floreano, Luca
|0 0000-0002-3654-3408
|b 5
700 1 _ |a Sala, Alessandro
|0 0000-0002-5845-1301
|b 6
700 1 _ |a Comelli, Giovanni
|0 0000-0003-4603-2094
|b 7
700 1 _ |a Moro, Stefania
|0 0000-0001-8445-4509
|b 8
700 1 _ |a Stredansky, Matus
|0 0000-0002-4907-1892
|b 9
700 1 _ |a Corva, Manuel
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Vesselli, Erik
|0 0000-0002-6799-0032
|b 11
700 1 _ |a Puschnig, Peter
|0 0000-0002-8057-7795
|b 12
700 1 _ |a Schneider, Claus Michael
|0 P:(DE-Juel1)130948
|b 13
700 1 _ |a Feyer, Vitaliy
|0 P:(DE-Juel1)145012
|b 14
|e Corresponding author
700 1 _ |a Zamborlini, Giovanni
|0 P:(DE-Juel1)162281
|b 15
700 1 _ |a Cinchetti, Mirko
|0 0000-0003-0735-8921
|b 16
773 _ _ |a 10.1039/D0TC00946F
|g Vol. 8, no. 26, p. 8876 - 8886
|0 PERI:(DE-600)2702245-6
|n 26
|p 8876 - 8886
|t Journal of materials chemistry / C
|v 8
|y 2020
|x 2050-7534
856 4 _ |u https://juser.fz-juelich.de/record/888202/files/d0tc00946f.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888202
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)145012
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM C : 2018
|d 2020-09-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM C : 2018
|d 2020-09-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2020-09-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-06
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21