000888209 001__ 888209
000888209 005__ 20250106101724.0
000888209 0247_ $$2doi$$a10.1021/jacs.0c07712
000888209 0247_ $$2ISSN$$a0002-7863
000888209 0247_ $$2ISSN$$a1520-5126
000888209 0247_ $$2ISSN$$a1943-2984
000888209 0247_ $$2pmid$$a32786777
000888209 0247_ $$2WOS$$aWOS:000569271600036
000888209 037__ $$aFZJ-2020-04763
000888209 082__ $$a540
000888209 1001_ $$00000-0002-2245-3057$$aZhou, Chongjian$$b0
000888209 245__ $$aExceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te
000888209 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2020
000888209 3367_ $$2DRIVER$$aarticle
000888209 3367_ $$2DataCite$$aOutput Types/Journal article
000888209 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734166225_311
000888209 3367_ $$2BibTeX$$aARTICLE
000888209 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888209 3367_ $$00$$2EndNote$$aJournal Article
000888209 500__ $$aBitte Post-print ergänzen
000888209 520__ $$aThermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a sought-after goal. Here, we report new n-type thermoelectric system CuxPbSe0.99Te0.01 (x = 0.0025, 0.004, and 0.005) exhibiting record-high average ZT ∼ 1.3 over 400–773 K ever reported for n-type polycrystalline materials including the state-of-the-art PbTe. We concurrently alloy Te to the PbSe lattice and introduce excess Cu to its interstitial voids. Their resulting strong attraction facilitates charge transfer from Cu atoms to the crystal matrix significantly. It follows the increased carrier concentration without damaging its mobility and the consequently improved electrical conductivity. This interaction also increases effective mass of electron in the conduction band according to DFT calculations, thereby raising the magnitude of Seebeck coefficient without diminishing electrical conductivity. Resultantly, Cu0.005PbSe0.99Te0.01 attains an exceptionally high average power factor of ∼27 μW cm–1 K–2 from 400 to 773 K with a maximum of ∼30 μW cm–1 K–2 at 300 K, the highest among all n- and p-type PbSe-based materials. Its ∼23 μW cm–1 K–2 at 773 K is even higher than ∼21 μW cm–1 K–2 of the state-of-the-art n-type PbTe. Interstitial Cu atoms induce the formation of coherent nanostructures. They are highly mobile, displacing Pb atoms from the ideal octahedral center and severely distorting the local microstructure. This significantly depresses lattice thermal conductivity to ∼0.2 Wm–1 K–1 at 773 K below the theoretical lower bound. The multiple effects of the dual incorporation of Cu and Te synergistically boosts a ZT of Cu0.005PbSe0.99Te0.01 to ∼1.7 at 773 K.
000888209 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000888209 588__ $$aDataset connected to CrossRef
000888209 7001_ $$00000-0002-3148-6600$$aYu, Yuan$$b1
000888209 7001_ $$00000-0001-8076-5211$$aLee, Yea-Lee$$b2
000888209 7001_ $$0P:(DE-HGF)0$$aGe, Bangzhi$$b3
000888209 7001_ $$00000-0002-9215-7528$$aLu, Weiqun$$b4
000888209 7001_ $$00000-0001-6543-203X$$aCojocaru-Mirédin, Oana$$b5
000888209 7001_ $$0P:(DE-HGF)0$$aIm, Jino$$b6
000888209 7001_ $$0P:(DE-HGF)0$$aCho, Sung-Pyo$$b7
000888209 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b8$$eCorresponding author
000888209 7001_ $$00000-0001-7742-3528$$aShi, Zhongqi$$b9
000888209 7001_ $$00000-0001-6274-3369$$aChung, In$$b10
000888209 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.0c07712$$gVol. 142, no. 35, p. 15172 - 15186$$n35$$p15172 - 15186$$tJournal of the American Chemical Society$$v142$$x1520-5126$$y2020
000888209 8564_ $$uhttps://juser.fz-juelich.de/record/888209/files/jacs.0c07712.pdf$$yRestricted
000888209 909CO $$ooai:juser.fz-juelich.de:888209$$pVDB
000888209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b8$$kFZJ
000888209 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000888209 9141_ $$y2020
000888209 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-03$$wger
000888209 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2018$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-03
000888209 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2018$$d2020-09-03
000888209 920__ $$lyes
000888209 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000888209 980__ $$ajournal
000888209 980__ $$aVDB
000888209 980__ $$aI:(DE-Juel1)PGI-10-20170113
000888209 980__ $$aUNRESTRICTED