001     888209
005     20250106101724.0
024 7 _ |a 10.1021/jacs.0c07712
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 32786777
|2 pmid
024 7 _ |a WOS:000569271600036
|2 WOS
037 _ _ |a FZJ-2020-04763
082 _ _ |a 540
100 1 _ |a Zhou, Chongjian
|0 0000-0002-2245-3057
|b 0
245 _ _ |a Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te
260 _ _ |a Washington, DC
|c 2020
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734166225_311
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Bitte Post-print ergänzen
520 _ _ |a Thermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a sought-after goal. Here, we report new n-type thermoelectric system CuxPbSe0.99Te0.01 (x = 0.0025, 0.004, and 0.005) exhibiting record-high average ZT ∼ 1.3 over 400–773 K ever reported for n-type polycrystalline materials including the state-of-the-art PbTe. We concurrently alloy Te to the PbSe lattice and introduce excess Cu to its interstitial voids. Their resulting strong attraction facilitates charge transfer from Cu atoms to the crystal matrix significantly. It follows the increased carrier concentration without damaging its mobility and the consequently improved electrical conductivity. This interaction also increases effective mass of electron in the conduction band according to DFT calculations, thereby raising the magnitude of Seebeck coefficient without diminishing electrical conductivity. Resultantly, Cu0.005PbSe0.99Te0.01 attains an exceptionally high average power factor of ∼27 μW cm–1 K–2 from 400 to 773 K with a maximum of ∼30 μW cm–1 K–2 at 300 K, the highest among all n- and p-type PbSe-based materials. Its ∼23 μW cm–1 K–2 at 773 K is even higher than ∼21 μW cm–1 K–2 of the state-of-the-art n-type PbTe. Interstitial Cu atoms induce the formation of coherent nanostructures. They are highly mobile, displacing Pb atoms from the ideal octahedral center and severely distorting the local microstructure. This significantly depresses lattice thermal conductivity to ∼0.2 Wm–1 K–1 at 773 K below the theoretical lower bound. The multiple effects of the dual incorporation of Cu and Te synergistically boosts a ZT of Cu0.005PbSe0.99Te0.01 to ∼1.7 at 773 K.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yu, Yuan
|0 0000-0002-3148-6600
|b 1
700 1 _ |a Lee, Yea-Lee
|0 0000-0001-8076-5211
|b 2
700 1 _ |a Ge, Bangzhi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lu, Weiqun
|0 0000-0002-9215-7528
|b 4
700 1 _ |a Cojocaru-Mirédin, Oana
|0 0000-0001-6543-203X
|b 5
700 1 _ |a Im, Jino
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cho, Sung-Pyo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 8
|e Corresponding author
700 1 _ |a Shi, Zhongqi
|0 0000-0001-7742-3528
|b 9
700 1 _ |a Chung, In
|0 0000-0001-6274-3369
|b 10
773 _ _ |a 10.1021/jacs.0c07712
|g Vol. 142, no. 35, p. 15172 - 15186
|0 PERI:(DE-600)1472210-0
|n 35
|p 15172 - 15186
|t Journal of the American Chemical Society
|v 142
|y 2020
|x 1520-5126
856 4 _ |u https://juser.fz-juelich.de/record/888209/files/jacs.0c07712.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:888209
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Electron Charge-Based Phenomena
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-03
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2018
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21