000888210 001__ 888210
000888210 005__ 20250106101715.0
000888210 0247_ $$2doi$$a10.1016/j.actamat.2020.05.044
000888210 0247_ $$2ISSN$$a1359-6454
000888210 0247_ $$2ISSN$$a1873-2453
000888210 0247_ $$2WOS$$aWOS:000552116400045
000888210 037__ $$aFZJ-2020-04764
000888210 082__ $$a670
000888210 1001_ $$00000-0003-3051-2480$$aWei, Shuai$$b0
000888210 245__ $$aViolation of the Stokes–Einstein relation in Ge2Sb2Te5, GeTe, Ag4In3Sb67Te26, and Ge15Sb85, and its connection to fast crystallization
000888210 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000888210 3367_ $$2DRIVER$$aarticle
000888210 3367_ $$2DataCite$$aOutput Types/Journal article
000888210 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734174173_20064
000888210 3367_ $$2BibTeX$$aARTICLE
000888210 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888210 3367_ $$00$$2EndNote$$aJournal Article
000888210 520__ $$aPhase-change materials (PCMs) are already commercialized in optical and non-volatile memory devices. Yet, the dynamics of atomic rearrangement processes and their temperature dependence, which govern their ultrafast switching, are still not fully understood. Here we use quasi-elastic neutron scattering to investigate the liquid-state dynamics of four prevailing PCMs Ge2Sb2Te5, GeTe, Ag4In3Sb67Te26(AIST), and Ge15Sb85 above their respective melting points Tm. Self-diffusion coefficients and structural relaxation times on the timescale of picoseconds are extracted from dynamic structure factors. The results indicate an unusual systematic violation of the Stokes-Einstein relation (SER) for each PCM in high-temperature regions above Tm, where the atomic-mobility is high. This is likely related to the formation of locally favored structures in liquid PCMs. Absolute values of diffusivity in the supercooled liquid AIST are derived from crystal-growth velocity, which are almost one order of magnitude higher than that expected from the SER in the technologically relevant temperature range ~20% below Tm. This is relevant to understand the crystallization kinetics of PCMs as crystal growth is controlled by diffusivity. Furthermore, the instantaneous shear modulus is determined ranging from 2 to 3 GPa for liquid PCMs, which permits extracting viscosity from microscopic structural relaxations usually accessible to simulations and scattering techniques.
000888210 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000888210 588__ $$aDataset connected to CrossRef
000888210 7001_ $$aPersch, Christoph$$b1
000888210 7001_ $$aStolpe, Moritz$$b2
000888210 7001_ $$00000-0003-4309-3983$$aEvenson, Zach$$b3
000888210 7001_ $$aColeman, Garrett$$b4
000888210 7001_ $$aLucas, Pierre$$b5
000888210 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b6$$eCorresponding author
000888210 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2020.05.044$$gVol. 195, p. 491 - 500$$p491 - 500$$tActa materialia$$v195$$x1359-6454$$y2020
000888210 909CO $$ooai:juser.fz-juelich.de:888210$$pVDB
000888210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b6$$kFZJ
000888210 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000888210 9141_ $$y2020
000888210 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2018$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23
000888210 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2018$$d2020-08-23
000888210 920__ $$lyes
000888210 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000888210 980__ $$ajournal
000888210 980__ $$aVDB
000888210 980__ $$aI:(DE-Juel1)PGI-10-20170113
000888210 980__ $$aUNRESTRICTED