000888211 001__ 888211
000888211 005__ 20210130010841.0
000888211 0247_ $$2doi$$a10.1002/adma.201908302
000888211 0247_ $$2ISSN$$a0935-9648
000888211 0247_ $$2ISSN$$a1521-4095
000888211 0247_ $$2Handle$$a2128/26307
000888211 0247_ $$2altmetric$$aaltmetric:80133919
000888211 0247_ $$2pmid$$apmid:32243014
000888211 0247_ $$2WOS$$aWOS:000523284500001
000888211 037__ $$aFZJ-2020-04765
000888211 082__ $$a660
000888211 1001_ $$0P:(DE-HGF)0$$aKooi, Bart J.$$b0
000888211 245__ $$aChalcogenides by Design: Functionality through Metavalent Bonding and Confinement
000888211 260__ $$aWeinheim$$bWiley-VCH$$c2020
000888211 3367_ $$2DRIVER$$aarticle
000888211 3367_ $$2DataCite$$aOutput Types/Journal article
000888211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606463197_6423
000888211 3367_ $$2BibTeX$$aARTICLE
000888211 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888211 3367_ $$00$$2EndNote$$aJournal Article
000888211 520__ $$aA unified picture of different application areas for incipient metals is presented. This unconventional material class includes several main‐group chalcogenides, such as GeTe, PbTe, Sb2Te3, Bi2Se3, AgSbTe2 and Ge2Sb2Te5. These compounds and related materials show a unique portfolio of physical properties. A novel map is discussed, which helps to explain these properties and separates the different fundamental bonding mechanisms (e.g., ionic, metallic, and covalent). The map also provides evidence for an unconventional, new bonding mechanism, coined metavalent bonding (MVB). Incipient metals, employing this bonding mechanism, also show a special bond breaking mechanism. MVB differs considerably from resonant bonding encountered in benzene or graphite. The concept of MVB is employed to explain the unique properties of materials utilizing it. Then, the link is made from fundamental insights to application‐relevant properties, crucial for the use of these materials as thermoelectrics, phase change materials, topological insulators or as active photonic components. The close relationship of the materials' properties and their application potential provides optimization schemes for different applications. Finally, evidence will be presented that for metavalently bonded materials interesting effects arise in reduced dimensions. In particular, the consequences for the crystallization kinetics of thin films and nanoparticles will be discussed in detail.
000888211 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000888211 588__ $$aDataset connected to CrossRef
000888211 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b1$$eCorresponding author
000888211 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201908302$$gVol. 32, no. 21, p. 1908302 -$$n21$$p1908302 -$$tAdvanced materials$$v32$$x1521-4095$$y2020
000888211 8564_ $$uhttps://juser.fz-juelich.de/record/888211/files/adma.201908302.pdf$$yOpenAccess
000888211 909CO $$ooai:juser.fz-juelich.de:888211$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b1$$kFZJ
000888211 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000888211 9141_ $$y2020
000888211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000888211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000888211 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-10-13
000888211 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888211 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000888211 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-10-13$$wger
000888211 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000888211 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2018$$d2020-10-13
000888211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000888211 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888211 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2018$$d2020-10-13
000888211 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000888211 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-10-13$$wger
000888211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000888211 920__ $$lyes
000888211 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000888211 980__ $$ajournal
000888211 980__ $$aVDB
000888211 980__ $$aUNRESTRICTED
000888211 980__ $$aI:(DE-Juel1)PGI-10-20170113
000888211 9801_ $$aFullTexts