000888231 001__ 888231 000888231 005__ 20230217124540.0 000888231 0247_ $$2doi$$a10.1088/1742-6596/1596/1/012013 000888231 0247_ $$2ISSN$$a1742-6588 000888231 0247_ $$2ISSN$$a1742-6596 000888231 0247_ $$2Handle$$a2128/26298 000888231 037__ $$aFZJ-2020-04780 000888231 082__ $$a530 000888231 1001_ $$0P:(DE-Juel1)167417$$aHützen, Anna$$b0$$eCorresponding author 000888231 245__ $$aSimulation of Polarized Beams from Laser-Plasma Accelerators 000888231 260__ $$aBristol$$bIOP Publ.87703$$c2020 000888231 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2020-07-01 000888231 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2020-07-01 000888231 3367_ $$2DRIVER$$aarticle 000888231 3367_ $$2DataCite$$aOutput Types/Journal article 000888231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613058773_4125 000888231 3367_ $$2BibTeX$$aARTICLE 000888231 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000888231 3367_ $$00$$2EndNote$$aJournal Article 000888231 520__ $$aThe generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wakefield acceleration have strongly been promoted during the last decades. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are influenced by the huge magnetic fields of plasma and, thus, how highly polarized beams can be produced. The realization of laser-plasma based accelerators for polarized beams is now being pursued as a joint effort of groups from Forschungszentrum Jülich (Germany), University of Crete (Greece), and SIOM Shanghai (China) within the ATHENA consortium. As a first step, we have theoretically investigated and identified the mechanisms that influence the beam polarization in laser-plasma accelerators. We then carried out a set of Particle-in-cell simulations on the acceleration of electrons and proton beams from gaseous and foil targets. We could show that intense polarized beams may be produced if pre-polarized gas targets of high density are employed. In these proceedings we further present that the polarization of protons in HT and HCl gas targets is largely conserved during laser wake-field acceleration, even if the proton energies enter the multi-GeV regime. Such polarized sources for electrons, protons, deuterons and 3He ions are now being built in Jülich. Proof-of-principle measurements at the (multi-)petawatt laser facilities PHELIX (GSI Darmstadt) and SULF (Shanghai) are in preparation. 000888231 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0 000888231 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x1 000888231 536__ $$0G:(DE-Juel1)jpgi61_20200501$$aSimulation of laser-induced proton acceleration from polarized gas and pellet targets (jpgi61_20200501)$$cjpgi61_20200501$$fSimulation of laser-induced proton acceleration from polarized gas and pellet targets$$x2 000888231 542__ $$2Crossref$$i2020-07-01$$uhttp://creativecommons.org/licenses/by/3.0/ 000888231 542__ $$2Crossref$$i2020-07-01$$uhttps://iopscience.iop.org/info/page/text-and-data-mining 000888231 588__ $$aDataset connected to CrossRef 000888231 7001_ $$0P:(DE-HGF)0$$aThomas, Johannes$$b1 000888231 7001_ $$0P:(DE-Juel1)131234$$aLehrach, Andreas$$b2 000888231 7001_ $$0P:(DE-HGF)0$$aRakitzis, T. Peter$$b3 000888231 7001_ $$0P:(DE-HGF)0$$aPukhov, Alexander$$b4 000888231 7001_ $$0P:(DE-HGF)0$$aJi, Liangliang$$b5 000888231 7001_ $$0P:(DE-HGF)0$$aWu, Yitong$$b6 000888231 7001_ $$0P:(DE-HGF)0$$aEngels, Ralf$$b7 000888231 7001_ $$0P:(DE-Juel1)131108$$aBüscher, Markus$$b8 000888231 77318 $$2Crossref$$3journal-article$$a10.1088/1742-6596/1596/1/012013$$bIOP Publishing$$d2020-07-01$$n1$$p012013$$tJournal of Physics: Conference Series$$v1596$$x1742-6588$$y2020 000888231 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/1596/1/012013$$gVol. 1596, p. 012013 -$$n1$$p012013$$tJournal of physics / Conference Series$$v1596$$x1742-6588$$y2020 000888231 8564_ $$uhttps://juser.fz-juelich.de/record/888231/files/H%C3%BCtzen_2020_J._Phys.%20_Conf._Ser._1596_012013.pdf$$yOpenAccess 000888231 909CO $$ooai:juser.fz-juelich.de:888231$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167417$$aForschungszentrum Jülich$$b0$$kFZJ 000888231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131234$$aForschungszentrum Jülich$$b2$$kFZJ 000888231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b8$$kFZJ 000888231 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000888231 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x1 000888231 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000888231 9141_ $$y2020 000888231 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000888231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000888231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000888231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000888231 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0 000888231 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x1 000888231 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 000888231 980__ $$ajournal 000888231 980__ $$aVDB 000888231 980__ $$aI:(DE-Juel1)PGI-6-20110106 000888231 980__ $$aI:(DE-Juel1)IKP-4-20111104 000888231 980__ $$aI:(DE-82)080012_20140620 000888231 980__ $$aUNRESTRICTED 000888231 9801_ $$aFullTexts 000888231 999C5 $$1Androic$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0096-0$$p207 -$$tNature$$v557$$y2018 000888231 999C5 $$1Grange$$2Crossref$$oGrange 2015$$y2015 000888231 999C5 $$1Burkardt$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/73/1/016201$$tRept. Prog. Phys.$$v73$$y2010 000888231 999C5 $$1Ageev$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2005.03.025$$p154 -$$tPhys. Lett. B$$v612$$y2005 000888231 999C5 $$1Gay$$2Crossref$$oGay 2009$$y2009 000888231 999C5 $$1Bederson$$2Crossref$$oBederson 2017$$y2017 000888231 999C5 $$1Glashausser$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.ns.29.120179.000341$$p33 -$$tAnn. Rev. Nucl. Part. Sci.$$v29$$y1979 000888231 999C5 $$1Rathmann$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/447/1/012011$$tJ. Phys. Conf. Ser.$$v447$$y2013 000888231 999C5 $$1Jaffe$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X03014459$$p1141 -$$tInt. J. Mod. Phys. A$$v18$$y2003 000888231 999C5 $$1Baer$$2Crossref$$9-- missing cx lookup --$$a10.2172/1347944$$tThe International Linear Collider Technical Design Report - Volume 2: Physics arXiv:1306.6352.$$y2013 000888231 999C5 $$1Mane$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/68/9/R01$$p1997 -$$tReports on Progress in Physics$$v68$$y2005 000888231 999C5 $$1Alekseev$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(02)01946-0$$p392 -$$tNucl. Instrum. Meth.$$vA499$$y2003 000888231 999C5 $$1Lehrach$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1607127$$p153 -$$tAIP Conference Proceedings$$v675$$y2003 000888231 999C5 $$1Hutzen$$2Crossref$$oHutzen 2019$$y2019 000888231 999C5 $$1Walker$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/874/1/012029$$tJ. Phys. Conf. Ser.$$v874$$y2017 000888231 999C5 $$1Buscher$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X19420284$$p00170 -$$tIJMPA$$v34$$y2019 000888231 999C5 $$1Wu$$2Crossref$$oWu 2019$$y2019 000888231 999C5 $$1Wu$$2Crossref$$oWu 2010$$y2010 000888231 999C5 $$1Wen$$2Crossref$$oWen 2019$$y2019 000888231 999C5 $$1Thomas$$2Crossref$$oThomas 2020$$y2020 000888231 999C5 $$1Thomas$$2Crossref$$9-- missing cx lookup --$$a10.1080/14786440108564170$$p1 -$$tThe London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science$$v3.13$$y1927 000888231 999C5 $$1Bargmann$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.2.435$$p435 -$$tPhys. Rev. Lett.$$v2$$y1959 000888231 999C5 $$1Gerlach$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01326983$$p349 -$$tZeitschrift für Physik$$v9$$y1922 000888231 999C5 $$1Flood$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physleta.2015.06.044$$p966 -$$tPhys. Lett. A$$v379$$y2015 000888231 999C5 $$1Sokolov$$2Crossref$$oSokolov 1964$$y1964 000888231 999C5 $$1Pukhov$$2Crossref$$oPukhov 2016$$y2016 000888231 999C5 $$1Arber$$2Crossref$$9-- missing cx lookup --$$a10.1088/0741-3335/57/11/113001$$tPlasma Physics and Controlled Fusion$$v57$$y2015 000888231 999C5 $$1Jin$$2Crossref$$oJin 2020$$y2020 000888231 999C5 $$1Shen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.76.055402$$tPhys. Rev. E$$v76$$y2007 000888231 999C5 $$1Rakitzis$$2Crossref$$9-- missing cx lookup --$$a10.1002/cphc.200400108$$p1489 -$$tChemPhysChem$$v5$$y2004 000888231 999C5 $$1Sofikitis$$2Crossref$$oSofikitis 2017$$y2017 000888231 999C5 $$1Juülich$$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-6-174$$pA138 -$$tJournal of large-scale research facilities$$v6$$y2020 000888231 999C5 $$1$$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-2-121$$pA62 -$$tJournal of large-scale research facilities$$v2$$y2016