000888231 001__ 888231
000888231 005__ 20230217124540.0
000888231 0247_ $$2doi$$a10.1088/1742-6596/1596/1/012013
000888231 0247_ $$2ISSN$$a1742-6588
000888231 0247_ $$2ISSN$$a1742-6596
000888231 0247_ $$2Handle$$a2128/26298
000888231 037__ $$aFZJ-2020-04780
000888231 082__ $$a530
000888231 1001_ $$0P:(DE-Juel1)167417$$aHützen, Anna$$b0$$eCorresponding author
000888231 245__ $$aSimulation of Polarized Beams from Laser-Plasma Accelerators
000888231 260__ $$aBristol$$bIOP Publ.87703$$c2020
000888231 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2020-07-01
000888231 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2020-07-01
000888231 3367_ $$2DRIVER$$aarticle
000888231 3367_ $$2DataCite$$aOutput Types/Journal article
000888231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613058773_4125
000888231 3367_ $$2BibTeX$$aARTICLE
000888231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888231 3367_ $$00$$2EndNote$$aJournal Article
000888231 520__ $$aThe generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wakefield acceleration have strongly been promoted during the last decades. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are influenced by the huge magnetic fields of plasma and, thus, how highly polarized beams can be produced. The realization of laser-plasma based accelerators for polarized beams is now being pursued as a joint effort of groups from Forschungszentrum Jülich (Germany), University of Crete (Greece), and SIOM Shanghai (China) within the ATHENA consortium. As a first step, we have theoretically investigated and identified the mechanisms that influence the beam polarization in laser-plasma accelerators. We then carried out a set of Particle-in-cell simulations on the acceleration of electrons and proton beams from gaseous and foil targets. We could show that intense polarized beams may be produced if pre-polarized gas targets of high density are employed. In these proceedings we further present that the polarization of protons in HT and HCl gas targets is largely conserved during laser wake-field acceleration, even if the proton energies enter the multi-GeV regime. Such polarized sources for electrons, protons, deuterons and 3He ions are now being built in Jülich. Proof-of-principle measurements at the (multi-)petawatt laser facilities PHELIX (GSI Darmstadt) and SULF (Shanghai) are in preparation.
000888231 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000888231 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x1
000888231 536__ $$0G:(DE-Juel1)jpgi61_20200501$$aSimulation of laser-induced proton acceleration from polarized gas and pellet targets (jpgi61_20200501)$$cjpgi61_20200501$$fSimulation of laser-induced proton acceleration from polarized gas and pellet targets$$x2
000888231 542__ $$2Crossref$$i2020-07-01$$uhttp://creativecommons.org/licenses/by/3.0/
000888231 542__ $$2Crossref$$i2020-07-01$$uhttps://iopscience.iop.org/info/page/text-and-data-mining
000888231 588__ $$aDataset connected to CrossRef
000888231 7001_ $$0P:(DE-HGF)0$$aThomas, Johannes$$b1
000888231 7001_ $$0P:(DE-Juel1)131234$$aLehrach, Andreas$$b2
000888231 7001_ $$0P:(DE-HGF)0$$aRakitzis, T. Peter$$b3
000888231 7001_ $$0P:(DE-HGF)0$$aPukhov, Alexander$$b4
000888231 7001_ $$0P:(DE-HGF)0$$aJi, Liangliang$$b5
000888231 7001_ $$0P:(DE-HGF)0$$aWu, Yitong$$b6
000888231 7001_ $$0P:(DE-HGF)0$$aEngels, Ralf$$b7
000888231 7001_ $$0P:(DE-Juel1)131108$$aBüscher, Markus$$b8
000888231 77318 $$2Crossref$$3journal-article$$a10.1088/1742-6596/1596/1/012013$$bIOP Publishing$$d2020-07-01$$n1$$p012013$$tJournal of Physics: Conference Series$$v1596$$x1742-6588$$y2020
000888231 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/1596/1/012013$$gVol. 1596, p. 012013 -$$n1$$p012013$$tJournal of physics / Conference Series$$v1596$$x1742-6588$$y2020
000888231 8564_ $$uhttps://juser.fz-juelich.de/record/888231/files/H%C3%BCtzen_2020_J._Phys.%20_Conf._Ser._1596_012013.pdf$$yOpenAccess
000888231 909CO $$ooai:juser.fz-juelich.de:888231$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167417$$aForschungszentrum Jülich$$b0$$kFZJ
000888231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131234$$aForschungszentrum Jülich$$b2$$kFZJ
000888231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b8$$kFZJ
000888231 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000888231 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x1
000888231 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000888231 9141_ $$y2020
000888231 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000888231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000888231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000888231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888231 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000888231 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x1
000888231 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000888231 980__ $$ajournal
000888231 980__ $$aVDB
000888231 980__ $$aI:(DE-Juel1)PGI-6-20110106
000888231 980__ $$aI:(DE-Juel1)IKP-4-20111104
000888231 980__ $$aI:(DE-82)080012_20140620
000888231 980__ $$aUNRESTRICTED
000888231 9801_ $$aFullTexts
000888231 999C5 $$1Androic$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0096-0$$p207 -$$tNature$$v557$$y2018
000888231 999C5 $$1Grange$$2Crossref$$oGrange 2015$$y2015
000888231 999C5 $$1Burkardt$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/73/1/016201$$tRept. Prog. Phys.$$v73$$y2010
000888231 999C5 $$1Ageev$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2005.03.025$$p154 -$$tPhys. Lett. B$$v612$$y2005
000888231 999C5 $$1Gay$$2Crossref$$oGay 2009$$y2009
000888231 999C5 $$1Bederson$$2Crossref$$oBederson 2017$$y2017
000888231 999C5 $$1Glashausser$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.ns.29.120179.000341$$p33 -$$tAnn. Rev. Nucl. Part. Sci.$$v29$$y1979
000888231 999C5 $$1Rathmann$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/447/1/012011$$tJ. Phys. Conf. Ser.$$v447$$y2013
000888231 999C5 $$1Jaffe$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X03014459$$p1141 -$$tInt. J. Mod. Phys. A$$v18$$y2003
000888231 999C5 $$1Baer$$2Crossref$$9-- missing cx lookup --$$a10.2172/1347944$$tThe International Linear Collider Technical Design Report - Volume 2: Physics arXiv:1306.6352.$$y2013
000888231 999C5 $$1Mane$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/68/9/R01$$p1997 -$$tReports on Progress in Physics$$v68$$y2005
000888231 999C5 $$1Alekseev$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(02)01946-0$$p392 -$$tNucl. Instrum. Meth.$$vA499$$y2003
000888231 999C5 $$1Lehrach$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1607127$$p153 -$$tAIP Conference Proceedings$$v675$$y2003
000888231 999C5 $$1Hutzen$$2Crossref$$oHutzen 2019$$y2019
000888231 999C5 $$1Walker$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/874/1/012029$$tJ. Phys. Conf. Ser.$$v874$$y2017
000888231 999C5 $$1Buscher$$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X19420284$$p00170 -$$tIJMPA$$v34$$y2019
000888231 999C5 $$1Wu$$2Crossref$$oWu 2019$$y2019
000888231 999C5 $$1Wu$$2Crossref$$oWu 2010$$y2010
000888231 999C5 $$1Wen$$2Crossref$$oWen 2019$$y2019
000888231 999C5 $$1Thomas$$2Crossref$$oThomas 2020$$y2020
000888231 999C5 $$1Thomas$$2Crossref$$9-- missing cx lookup --$$a10.1080/14786440108564170$$p1 -$$tThe London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science$$v3.13$$y1927
000888231 999C5 $$1Bargmann$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.2.435$$p435 -$$tPhys. Rev. Lett.$$v2$$y1959
000888231 999C5 $$1Gerlach$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01326983$$p349 -$$tZeitschrift für Physik$$v9$$y1922
000888231 999C5 $$1Flood$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physleta.2015.06.044$$p966 -$$tPhys. Lett. A$$v379$$y2015
000888231 999C5 $$1Sokolov$$2Crossref$$oSokolov 1964$$y1964
000888231 999C5 $$1Pukhov$$2Crossref$$oPukhov 2016$$y2016
000888231 999C5 $$1Arber$$2Crossref$$9-- missing cx lookup --$$a10.1088/0741-3335/57/11/113001$$tPlasma Physics and Controlled Fusion$$v57$$y2015
000888231 999C5 $$1Jin$$2Crossref$$oJin 2020$$y2020
000888231 999C5 $$1Shen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.76.055402$$tPhys. Rev. E$$v76$$y2007
000888231 999C5 $$1Rakitzis$$2Crossref$$9-- missing cx lookup --$$a10.1002/cphc.200400108$$p1489 -$$tChemPhysChem$$v5$$y2004
000888231 999C5 $$1Sofikitis$$2Crossref$$oSofikitis 2017$$y2017
000888231 999C5 $$1Juülich$$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-6-174$$pA138 -$$tJournal of large-scale research facilities$$v6$$y2020
000888231 999C5 $$1$$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-2-121$$pA62 -$$tJournal of large-scale research facilities$$v2$$y2016