001     888231
005     20230217124540.0
024 7 _ |a 10.1088/1742-6596/1596/1/012013
|2 doi
024 7 _ |a 1742-6588
|2 ISSN
024 7 _ |a 1742-6596
|2 ISSN
024 7 _ |a 2128/26298
|2 Handle
037 _ _ |a FZJ-2020-04780
082 _ _ |a 530
100 1 _ |a Hützen, Anna
|0 P:(DE-Juel1)167417
|b 0
|e Corresponding author
245 _ _ |a Simulation of Polarized Beams from Laser-Plasma Accelerators
260 _ _ |a Bristol
|c 2020
|b IOP Publ.87703
264 _ 1 |3 print
|2 Crossref
|b IOP Publishing
|c 2020-07-01
264 _ 1 |3 print
|2 Crossref
|b IOP Publishing
|c 2020-07-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1613058773_4125
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wakefield acceleration have strongly been promoted during the last decades. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are influenced by the huge magnetic fields of plasma and, thus, how highly polarized beams can be produced. The realization of laser-plasma based accelerators for polarized beams is now being pursued as a joint effort of groups from Forschungszentrum Jülich (Germany), University of Crete (Greece), and SIOM Shanghai (China) within the ATHENA consortium. As a first step, we have theoretically investigated and identified the mechanisms that influence the beam polarization in laser-plasma accelerators. We then carried out a set of Particle-in-cell simulations on the acceleration of electrons and proton beams from gaseous and foil targets. We could show that intense polarized beams may be produced if pre-polarized gas targets of high density are employed. In these proceedings we further present that the polarization of protons in HT and HCl gas targets is largely conserved during laser wake-field acceleration, even if the proton energies enter the multi-GeV regime. Such polarized sources for electrons, protons, deuterons and 3He ions are now being built in Jülich. Proof-of-principle measurements at the (multi-)petawatt laser facilities PHELIX (GSI Darmstadt) and SULF (Shanghai) are in preparation.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
536 _ _ |a 631 - Accelerator R & D (POF3-631)
|0 G:(DE-HGF)POF3-631
|c POF3-631
|f POF III
|x 1
536 _ _ |a Simulation of laser-induced proton acceleration from polarized gas and pellet targets (jpgi61_20200501)
|0 G:(DE-Juel1)jpgi61_20200501
|c jpgi61_20200501
|f Simulation of laser-induced proton acceleration from polarized gas and pellet targets
|x 2
542 _ _ |i 2020-07-01
|2 Crossref
|u http://creativecommons.org/licenses/by/3.0/
542 _ _ |i 2020-07-01
|2 Crossref
|u https://iopscience.iop.org/info/page/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Thomas, Johannes
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lehrach, Andreas
|0 P:(DE-Juel1)131234
|b 2
700 1 _ |a Rakitzis, T. Peter
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pukhov, Alexander
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ji, Liangliang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wu, Yitong
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Engels, Ralf
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Büscher, Markus
|0 P:(DE-Juel1)131108
|b 8
773 1 8 |a 10.1088/1742-6596/1596/1/012013
|b IOP Publishing
|d 2020-07-01
|n 1
|p 012013
|3 journal-article
|2 Crossref
|t Journal of Physics: Conference Series
|v 1596
|y 2020
|x 1742-6588
773 _ _ |a 10.1088/1742-6596/1596/1/012013
|g Vol. 1596, p. 012013 -
|0 PERI:(DE-600)2166409-2
|n 1
|p 012013
|t Journal of physics / Conference Series
|v 1596
|y 2020
|x 1742-6588
856 4 _ |u https://juser.fz-juelich.de/record/888231/files/H%C3%BCtzen_2020_J._Phys.%20_Conf._Ser._1596_012013.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888231
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167417
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131108
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Spin-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Accelerator R & D
|x 1
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-4-20111104
|k IKP-4
|l Kernphysikalische Großgeräte
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)IKP-4-20111104
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1038/s41586-018-0096-0
|9 -- missing cx lookup --
|1 Androic
|p 207 -
|2 Crossref
|t Nature
|v 557
|y 2018
999 C 5 |1 Grange
|y 2015
|2 Crossref
|o Grange 2015
999 C 5 |a 10.1088/0034-4885/73/1/016201
|1 Burkardt
|9 -- missing cx lookup --
|2 Crossref
|t Rept. Prog. Phys.
|v 73
|y 2010
999 C 5 |a 10.1016/j.physletb.2005.03.025
|9 -- missing cx lookup --
|1 Ageev
|p 154 -
|2 Crossref
|t Phys. Lett. B
|v 612
|y 2005
999 C 5 |1 Gay
|y 2009
|2 Crossref
|o Gay 2009
999 C 5 |1 Bederson
|y 2017
|2 Crossref
|o Bederson 2017
999 C 5 |a 10.1146/annurev.ns.29.120179.000341
|9 -- missing cx lookup --
|1 Glashausser
|p 33 -
|2 Crossref
|t Ann. Rev. Nucl. Part. Sci.
|v 29
|y 1979
999 C 5 |a 10.1088/1742-6596/447/1/012011
|1 Rathmann
|9 -- missing cx lookup --
|2 Crossref
|t J. Phys. Conf. Ser.
|v 447
|y 2013
999 C 5 |a 10.1142/S0217751X03014459
|9 -- missing cx lookup --
|1 Jaffe
|p 1141 -
|2 Crossref
|t Int. J. Mod. Phys. A
|v 18
|y 2003
999 C 5 |a 10.2172/1347944
|1 Baer
|y 2013
|2 Crossref
|t The International Linear Collider Technical Design Report - Volume 2: Physics arXiv:1306.6352.
|9 -- missing cx lookup --
999 C 5 |a 10.1088/0034-4885/68/9/R01
|9 -- missing cx lookup --
|1 Mane
|p 1997 -
|2 Crossref
|t Reports on Progress in Physics
|v 68
|y 2005
999 C 5 |a 10.1016/S0168-9002(02)01946-0
|9 -- missing cx lookup --
|1 Alekseev
|p 392 -
|2 Crossref
|t Nucl. Instrum. Meth.
|v A499
|y 2003
999 C 5 |a 10.1063/1.1607127
|9 -- missing cx lookup --
|1 Lehrach
|p 153 -
|2 Crossref
|t AIP Conference Proceedings
|v 675
|y 2003
999 C 5 |1 Hutzen
|y 2019
|2 Crossref
|o Hutzen 2019
999 C 5 |a 10.1088/1742-6596/874/1/012029
|1 Walker
|9 -- missing cx lookup --
|2 Crossref
|t J. Phys. Conf. Ser.
|v 874
|y 2017
999 C 5 |a 10.1142/S0217751X19420284
|9 -- missing cx lookup --
|1 Buscher
|p 00170 -
|2 Crossref
|t IJMPA
|v 34
|y 2019
999 C 5 |1 Wu
|y 2019
|2 Crossref
|o Wu 2019
999 C 5 |1 Wu
|y 2010
|2 Crossref
|o Wu 2010
999 C 5 |1 Wen
|y 2019
|2 Crossref
|o Wen 2019
999 C 5 |1 Thomas
|y 2020
|2 Crossref
|o Thomas 2020
999 C 5 |a 10.1080/14786440108564170
|9 -- missing cx lookup --
|1 Thomas
|p 1 -
|2 Crossref
|t The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
|v 3.13
|y 1927
999 C 5 |a 10.1103/PhysRevLett.2.435
|9 -- missing cx lookup --
|1 Bargmann
|p 435 -
|2 Crossref
|t Phys. Rev. Lett.
|v 2
|y 1959
999 C 5 |a 10.1007/BF01326983
|9 -- missing cx lookup --
|1 Gerlach
|p 349 -
|2 Crossref
|t Zeitschrift für Physik
|v 9
|y 1922
999 C 5 |a 10.1016/j.physleta.2015.06.044
|9 -- missing cx lookup --
|1 Flood
|p 966 -
|2 Crossref
|t Phys. Lett. A
|v 379
|y 2015
999 C 5 |1 Sokolov
|y 1964
|2 Crossref
|o Sokolov 1964
999 C 5 |1 Pukhov
|y 2016
|2 Crossref
|o Pukhov 2016
999 C 5 |a 10.1088/0741-3335/57/11/113001
|1 Arber
|9 -- missing cx lookup --
|2 Crossref
|t Plasma Physics and Controlled Fusion
|v 57
|y 2015
999 C 5 |1 Jin
|y 2020
|2 Crossref
|o Jin 2020
999 C 5 |a 10.1103/PhysRevE.76.055402
|1 Shen
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Rev. E
|v 76
|y 2007
999 C 5 |a 10.1002/cphc.200400108
|9 -- missing cx lookup --
|1 Rakitzis
|p 1489 -
|2 Crossref
|t ChemPhysChem
|v 5
|y 2004
999 C 5 |1 Sofikitis
|y 2017
|2 Crossref
|o Sofikitis 2017
999 C 5 |a 10.17815/jlsrf-6-174
|9 -- missing cx lookup --
|1 Juülich
|p A138 -
|2 Crossref
|t Journal of large-scale research facilities
|v 6
|y 2020
999 C 5 |a 10.17815/jlsrf-2-121
|9 -- missing cx lookup --
|1
|p A62 -
|2 Crossref
|t Journal of large-scale research facilities
|v 2
|y 2016


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21