001 | 888231 | ||
005 | 20230217124540.0 | ||
024 | 7 | _ | |a 10.1088/1742-6596/1596/1/012013 |2 doi |
024 | 7 | _ | |a 1742-6588 |2 ISSN |
024 | 7 | _ | |a 1742-6596 |2 ISSN |
024 | 7 | _ | |a 2128/26298 |2 Handle |
037 | _ | _ | |a FZJ-2020-04780 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Hützen, Anna |0 P:(DE-Juel1)167417 |b 0 |e Corresponding author |
245 | _ | _ | |a Simulation of Polarized Beams from Laser-Plasma Accelerators |
260 | _ | _ | |a Bristol |c 2020 |b IOP Publ.87703 |
264 | _ | 1 | |3 print |2 Crossref |b IOP Publishing |c 2020-07-01 |
264 | _ | 1 | |3 print |2 Crossref |b IOP Publishing |c 2020-07-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1613058773_4125 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wakefield acceleration have strongly been promoted during the last decades. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are influenced by the huge magnetic fields of plasma and, thus, how highly polarized beams can be produced. The realization of laser-plasma based accelerators for polarized beams is now being pursued as a joint effort of groups from Forschungszentrum Jülich (Germany), University of Crete (Greece), and SIOM Shanghai (China) within the ATHENA consortium. As a first step, we have theoretically investigated and identified the mechanisms that influence the beam polarization in laser-plasma accelerators. We then carried out a set of Particle-in-cell simulations on the acceleration of electrons and proton beams from gaseous and foil targets. We could show that intense polarized beams may be produced if pre-polarized gas targets of high density are employed. In these proceedings we further present that the polarization of protons in HT and HCl gas targets is largely conserved during laser wake-field acceleration, even if the proton energies enter the multi-GeV regime. Such polarized sources for electrons, protons, deuterons and 3He ions are now being built in Jülich. Proof-of-principle measurements at the (multi-)petawatt laser facilities PHELIX (GSI Darmstadt) and SULF (Shanghai) are in preparation. |
536 | _ | _ | |a 522 - Controlling Spin-Based Phenomena (POF3-522) |0 G:(DE-HGF)POF3-522 |c POF3-522 |f POF III |x 0 |
536 | _ | _ | |a 631 - Accelerator R & D (POF3-631) |0 G:(DE-HGF)POF3-631 |c POF3-631 |f POF III |x 1 |
536 | _ | _ | |a Simulation of laser-induced proton acceleration from polarized gas and pellet targets (jpgi61_20200501) |0 G:(DE-Juel1)jpgi61_20200501 |c jpgi61_20200501 |f Simulation of laser-induced proton acceleration from polarized gas and pellet targets |x 2 |
542 | _ | _ | |i 2020-07-01 |2 Crossref |u http://creativecommons.org/licenses/by/3.0/ |
542 | _ | _ | |i 2020-07-01 |2 Crossref |u https://iopscience.iop.org/info/page/text-and-data-mining |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Thomas, Johannes |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Lehrach, Andreas |0 P:(DE-Juel1)131234 |b 2 |
700 | 1 | _ | |a Rakitzis, T. Peter |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Pukhov, Alexander |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Ji, Liangliang |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Wu, Yitong |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Engels, Ralf |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Büscher, Markus |0 P:(DE-Juel1)131108 |b 8 |
773 | 1 | 8 | |a 10.1088/1742-6596/1596/1/012013 |b IOP Publishing |d 2020-07-01 |n 1 |p 012013 |3 journal-article |2 Crossref |t Journal of Physics: Conference Series |v 1596 |y 2020 |x 1742-6588 |
773 | _ | _ | |a 10.1088/1742-6596/1596/1/012013 |g Vol. 1596, p. 012013 - |0 PERI:(DE-600)2166409-2 |n 1 |p 012013 |t Journal of physics / Conference Series |v 1596 |y 2020 |x 1742-6588 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888231/files/H%C3%BCtzen_2020_J._Phys.%20_Conf._Ser._1596_012013.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:888231 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)167417 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131234 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131108 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Controlling Spin-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF3-630 |0 G:(DE-HGF)POF3-631 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Accelerator R & D |x 1 |
913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IKP-4-20111104 |k IKP-4 |l Kernphysikalische Großgeräte |x 1 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IKP-4-20111104 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/s41586-018-0096-0 |9 -- missing cx lookup -- |1 Androic |p 207 - |2 Crossref |t Nature |v 557 |y 2018 |
999 | C | 5 | |1 Grange |y 2015 |2 Crossref |o Grange 2015 |
999 | C | 5 | |a 10.1088/0034-4885/73/1/016201 |1 Burkardt |9 -- missing cx lookup -- |2 Crossref |t Rept. Prog. Phys. |v 73 |y 2010 |
999 | C | 5 | |a 10.1016/j.physletb.2005.03.025 |9 -- missing cx lookup -- |1 Ageev |p 154 - |2 Crossref |t Phys. Lett. B |v 612 |y 2005 |
999 | C | 5 | |1 Gay |y 2009 |2 Crossref |o Gay 2009 |
999 | C | 5 | |1 Bederson |y 2017 |2 Crossref |o Bederson 2017 |
999 | C | 5 | |a 10.1146/annurev.ns.29.120179.000341 |9 -- missing cx lookup -- |1 Glashausser |p 33 - |2 Crossref |t Ann. Rev. Nucl. Part. Sci. |v 29 |y 1979 |
999 | C | 5 | |a 10.1088/1742-6596/447/1/012011 |1 Rathmann |9 -- missing cx lookup -- |2 Crossref |t J. Phys. Conf. Ser. |v 447 |y 2013 |
999 | C | 5 | |a 10.1142/S0217751X03014459 |9 -- missing cx lookup -- |1 Jaffe |p 1141 - |2 Crossref |t Int. J. Mod. Phys. A |v 18 |y 2003 |
999 | C | 5 | |a 10.2172/1347944 |1 Baer |y 2013 |2 Crossref |t The International Linear Collider Technical Design Report - Volume 2: Physics arXiv:1306.6352. |9 -- missing cx lookup -- |
999 | C | 5 | |a 10.1088/0034-4885/68/9/R01 |9 -- missing cx lookup -- |1 Mane |p 1997 - |2 Crossref |t Reports on Progress in Physics |v 68 |y 2005 |
999 | C | 5 | |a 10.1016/S0168-9002(02)01946-0 |9 -- missing cx lookup -- |1 Alekseev |p 392 - |2 Crossref |t Nucl. Instrum. Meth. |v A499 |y 2003 |
999 | C | 5 | |a 10.1063/1.1607127 |9 -- missing cx lookup -- |1 Lehrach |p 153 - |2 Crossref |t AIP Conference Proceedings |v 675 |y 2003 |
999 | C | 5 | |1 Hutzen |y 2019 |2 Crossref |o Hutzen 2019 |
999 | C | 5 | |a 10.1088/1742-6596/874/1/012029 |1 Walker |9 -- missing cx lookup -- |2 Crossref |t J. Phys. Conf. Ser. |v 874 |y 2017 |
999 | C | 5 | |a 10.1142/S0217751X19420284 |9 -- missing cx lookup -- |1 Buscher |p 00170 - |2 Crossref |t IJMPA |v 34 |y 2019 |
999 | C | 5 | |1 Wu |y 2019 |2 Crossref |o Wu 2019 |
999 | C | 5 | |1 Wu |y 2010 |2 Crossref |o Wu 2010 |
999 | C | 5 | |1 Wen |y 2019 |2 Crossref |o Wen 2019 |
999 | C | 5 | |1 Thomas |y 2020 |2 Crossref |o Thomas 2020 |
999 | C | 5 | |a 10.1080/14786440108564170 |9 -- missing cx lookup -- |1 Thomas |p 1 - |2 Crossref |t The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science |v 3.13 |y 1927 |
999 | C | 5 | |a 10.1103/PhysRevLett.2.435 |9 -- missing cx lookup -- |1 Bargmann |p 435 - |2 Crossref |t Phys. Rev. Lett. |v 2 |y 1959 |
999 | C | 5 | |a 10.1007/BF01326983 |9 -- missing cx lookup -- |1 Gerlach |p 349 - |2 Crossref |t Zeitschrift für Physik |v 9 |y 1922 |
999 | C | 5 | |a 10.1016/j.physleta.2015.06.044 |9 -- missing cx lookup -- |1 Flood |p 966 - |2 Crossref |t Phys. Lett. A |v 379 |y 2015 |
999 | C | 5 | |1 Sokolov |y 1964 |2 Crossref |o Sokolov 1964 |
999 | C | 5 | |1 Pukhov |y 2016 |2 Crossref |o Pukhov 2016 |
999 | C | 5 | |a 10.1088/0741-3335/57/11/113001 |1 Arber |9 -- missing cx lookup -- |2 Crossref |t Plasma Physics and Controlled Fusion |v 57 |y 2015 |
999 | C | 5 | |1 Jin |y 2020 |2 Crossref |o Jin 2020 |
999 | C | 5 | |a 10.1103/PhysRevE.76.055402 |1 Shen |9 -- missing cx lookup -- |2 Crossref |t Phys. Rev. E |v 76 |y 2007 |
999 | C | 5 | |a 10.1002/cphc.200400108 |9 -- missing cx lookup -- |1 Rakitzis |p 1489 - |2 Crossref |t ChemPhysChem |v 5 |y 2004 |
999 | C | 5 | |1 Sofikitis |y 2017 |2 Crossref |o Sofikitis 2017 |
999 | C | 5 | |a 10.17815/jlsrf-6-174 |9 -- missing cx lookup -- |1 Juülich |p A138 - |2 Crossref |t Journal of large-scale research facilities |v 6 |y 2020 |
999 | C | 5 | |a 10.17815/jlsrf-2-121 |9 -- missing cx lookup -- |1 |p A62 - |2 Crossref |t Journal of large-scale research facilities |v 2 |y 2016 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|