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The acceleration of polarized electrons and protons in strong laser and plasma fields is a very attractive
option to obtain polarized beams in the GeV range. We investigate the feasibility of particle acceleration in
strong fields without destroying an initial polarization, taking into account all relevant mechanisms that
could cause polarization losses, i.e. the spin precession described by the T-BMT equation, the Sokolov-
Ternov effect and the Stern-Gerlach force. Scaling laws for the (de-)polarization time caused by these
effects reveal that the dominant polarization limiting effect is the rotation of the single particle spins around
the local electromagnetic fields. We compare our findings to test-particle simulations for high energetic
electrons moving in a homogeneous electric field. For high particle energies the observed depolarization
times are in good agreement with the analytically estimated ones.
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I. INTRODUCTION

Spin-polarized particle beams are widely used for
scattering experiments in nuclear and particle physics to
study the interaction and structure of matter, and to test the
Standard Model for Particle Physics [1–3]. In particular, the
structure of subatomic particles like protons or neutrons can
be explored to get further insides of QCD [4] or to probe the
nuclear spin structure [5]. Furthermore, polarized particle
beams are advantageous to get a better understanding of
nuclear reactions [6], to investigate symmetry violation, to
interpret new asymmetries, to measure quantum numbers
of new particles [3,7–9] or to investigate the dynamics of
molecules [10,11].

The technique of producing polarized beams strongly
depends on the type of particle and their energies. For
stable ones, such as electrons or protons, polarized sources
can be employed with subsequent acceleration in a linear
accelerator or a synchrotron. For instable particles like
muons, polarization dependent particle decays are utilized
[2], while stable secondary beams, like antiprotons, might
be polarized in dedicated storage rings by spin-dependent
interactions [12]. Electron or positron beams can be
spontaneously polarized in magnetic fields of storage rings
due to the emission of spin-flip synchrotron radiation acting
on individual beam particles, the so-called Sokolov-Ternov
effect in storage rings [13,14].
Up to now, in most cases high-energetic polarized beams

are generated in conventional particle accelerators [13]. In
circular accelerators depolarizing spin resonances must be
compensated by applying complex correction techniques to
maintain the beam’s polarization [15–17]. In linear accel-
erators, such a reduction of polarization can be neglected
due to the very short interaction time between particle
bunches and accelerating fields.
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All methods mentioned above still rely on conventional
particle accelerators that are typically very large in scale
and budget. Therefore, concepts based on laser-driven
wakefield acceleration or via ponderomotive scattering
from extremely intense laser pulses have strongly been
promoted during the last decades. The ultimate goal is to
build the next generation highly compact and cost-effective
accelerator facilities using a plasma as the accelerating
medium, see e.g. Ref. [18]. However, despite many
advances in the understanding of fundamental physical
phenomena, one largely unexplored issue here is how the
particle spins are influenced by the huge electromagnetic
fields which are inherently present in the plasma and what
fundamental mechanisms may lead to the production of
highly polarized beams. In general, there are two possible
scenarios: either the magnetic field can align the spin of the
accelerated beam particles, or the spins are too inert, so that
a short acceleration has no influence on the spin alignment
of a pre-polarized target. In this case, the polarization
would be maintained throughout the whole acceleration
process but a prepolarized target would be required.
To characterize the actual scenario, a constant descrip-

tion of the relevant physical mechanisms is necessary.
For example, if the single particle spins are treated in a
semiclassical limit, it is the T-BMT equation (see Sec. II)
that determines the spin precession around the local
electromagnetic field lines in dependence of the single
particles’motion. If other physical effects are considered, it
is important to know how they are related to the particle
motion and the temporal spin evolution. Therefore, a
schematic overview of the relevant relations between single
particle trajectory (blue), spin (red) and radiation (yellow)
is given in Fig. 1. Here, we see that the Stern-Gerlach force
primary effects the trajectory of a particle, but only a theory
also including the T-BMT equation self-consistently
describes the particle and spin motion in electromagnetic
fields. If the particles’ energy is high enough, radiation
effects must be considered, too. In the classical and
semiclassical limit, acceleration of charged particles is
treated within the framework of the classical field theory.
This theory also describes the back action of radiation on
the particle motion due to the radiation reaction force. In
general, the radiation reaction force exceeds the Stern-
Gerlach force by far if the particles are ultrarelativistic.
But there are some field configurations which reverse this
situation, so that the radiation reaction force can be
neglected against the Stern-Gerlach force (see e.g., [19]).
A direct coupling between single particle spins and
radiation fields is treated in the context of quantum field
theory. In this theory, the mechanism describing the
spontaneous self-polarization of an accelerated particle
ensemble is known as the Sokolov-Ternov effect (also
see Fig. 2, line 3). Another possible polarization effect,
that is not related to this rather quantum mechanical
mechanism, is the possibility to spatially separate two

FIG. 1. Schematic overview of relations between single particle
trajectory (blue), spin (red) and radiation (yellow). The black
arrows indicate the basic physical process that links two of these
fields.

FIG. 2. Sketch of basic processes that need to be discussed in a
laser-plasma accelerator for polarized particle beams. 1st line:
Pure kinetic evolution of an initially ordered particle ensemble in
strong fields. 2nd line: Same kinetic evolution as in the first line
for an initially polarized particle beam. The black arrows indicate
the single particle spins which are treated in a semi-classical limit
following the T-BMT equation. 3rd line: The particles’ positions
evolve as in the previous lines but their initially unordered spins
individually flip in z-direction (red dots for spin up and blue dots
for spin down) such that a certain polarization builds up. The
corresponding mechanism is known as the Sokolov-Ternov
effect. Last line: If the Stern-Gerlach force (or its mean) acts
constantly for a longer time on an initially unpolarized and
spatially unordered ensemble, we expect a certain beam split-up
such that two polarized beams (red dots for spin up and blue dots
for spin down) emerge.
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overlapping, opposite polarized beams due to a constantly
acting Stern-Gerlach force (also see Fig. 2, line 4). Another
possible interpretation of these basic processes is to
introduce a spin-dependent radiation-reaction force, which
is able to describe a beam-filter mechanism similar a
coupled but separately described combination of the
Stern-Gerlach and the radiation-reaction force [20].
Independent from the used semi-classical model, a system,
which includes the T-BMT spin motion solely, will only be
able to describe the depolarization of an initially polarized
ensemble based on an asynchronous spin precession (also
see Fig. 2, line 2).
In our present work we follow Ehrenfest’s theorem and

treat the particle spin in a semiclassical approach such that
the vector s can be interpreted as the expectation value
s ¼ hΨjσjΨi (here jΨi is the normalized two-component
spinor and σ are the Pauli matrices) [13]. Within this
approach the polarization

P ¼ 1

N

XN
i¼1

si ð1Þ

of an N-particle system is conserved relative to a certain
axis, if the action angle

αmax ¼ max
i

�
arccos

�
P0 · si;f

jP0j · jsi;f j
��

ð2Þ

between the initial polarization P0 and the finial spin
vectors si;f stays small. The processes relevant for polari-
zation effects in conventional accelerators have been
scrutinized in numerous works, see, e.g., the Review by
Mane et al. [13]. In analogy to these discussions the aim of
our work is to identify the relevant mechanisms (see also
Fig. 2) that may have an influence on beam polarization in
laser-plasma accelerators, i.e. the T-BMT equation, the
Sokolov-Ternov effect and the Stern-Gerlach force. We
derive rather general approximations of the strength of
these effects that do not depend on the specific field
configuration. Hence, it is the field gradient and the field
strength from which we determine whether polarization
conserving particle acceleration is possible or not. This
approach allows us to analytically formulate scaling laws
for the (de-)polarization time in fields which are as strong
as those in a laser or wakefield accelerator for light
electrons and comparatively heavy protons. Test-particle
simulations for relativistic electrons moving in a homo-
geneous electric field show that the analytically estimated
minimum (de-)polarization time is in the same order as the
observed one. Our numerical approaches include radiation
(back)reaction on the single particle trajectories. However,
our analytical estimations are only valid as long as other
quantum mechanical effects such as pair creation and
emission of hard photons can be neglected.

To model the spin precession, we solve the T-BMT
equation analytically for various limiting cases and discuss
the depolarization time as a function of the particle rest
massm, its energy E ¼ γmc2 and the external field strength
in Sec. II. In Sec. III we estimate the perturbation of single
particle trajectories in the context of a Lagrangian theory
for the relativistic generalization of the Stern-Gerlach force.
After a further generalization of the SG Lagrangian we
discuss the Sokolov-Ternov effect in the scope of a
Hamiltonian theory in Sec. IV. In the last Sec. V we
compare our findings to test-particle simulations for high
energetic electrons moving in a homogeneous electric field.
These simulations solve the equations of motion including
radiation reaction and the Stern-Gerlach force. The
observed depolarization times are in good agreement with
the analytically estimated ones from Sec. II.

II. T-BMT

In this section we derive the depolarization time TD for
an initially fully polarized electron or proton ensemble. The
situation we describe is visualized in the second line of
Fig. 2, where the particles (red dots) move independently of
their individual spin vectors (black arrows) so that an
initially (spatial and spin) ordered system state becomes
unordered after a certain time (denoted by bold T). We
focus on a situation where the single particle spins do not
synchronize, such that the estimated depolarization time is
a lower limit for laser-plasma accelerators.
If particles with mass m, charge q · e, anomalous

magnetic moment a and velocity v move in an electro-
magnetic field E, B with vanishing gradient, their spin
vectors si precess around the local electromagnetic fields
and evolve according to the T-BMT equation

dsi
dt

¼ −Ω × si: ð3Þ

In cgs units the rotation frequency is simply [13]

Ω ¼ q · e
mc

�
ΩBB − Ωv

�
v
c
· B

�
v
c
−ΩE

v
c
×E

�
; ð4Þ

where

ΩB ¼ aþ 1

γ
; Ωv ¼

aγ
γ þ 1

; ΩE ¼ aþ 1

1þ γ
: ð5Þ

If all spin vectors in the N-particle ensemble precess
coherently, a certain polarization changes its orientation
in space but its absolute value is conserved. This would
be possible if all particles saw the same electromagnetic
field and if all particles moved on similar trajectories.
Particularly, the conservation of polarization during laser-
plasma acceleration has to be considered in two parts:
(i) during the injection of low energetic (γ ≈ 1) particles
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into the (laser- or wake-) field; (ii) during the steady
acceleration phase of already relativistic (γ ≫ 1) particles.
In the following, we focus on the theoretical description
of phase (ii) by deriving the depolarization time from the
T-BMT equation solely. For a detailed analysis of (i) we
refer to the work of Wu et al. [21] andWen et al. [22]. Here,
the conservation of polarization during the injection of
electrons into a wakefield, driven by an intense laser pulse,
is demonstrated and explained.
In this work, we derive a scaling law for the minimum

depolarization time for electrons (and positrons) and
protons in strong fields without discernible symmetry.
Precise and case dependent estimations for the depolari-
zation time can be made for an exactly known local field
distribution. For example, if we considered the highly
symmetric potentials known from spherical, quasistatic
bubble and blow-out models [23–33], we could solve
the T-BMT equation analytical and would find that the
polarization of an initially zero emittance electron bunch is
preserved for the whole acceleration time [34]. If we
substituted the accelerating and focusing fields from more
general models for channeled plasma [35–38], we could
study the influence of the plasma density profile on the
polarization evolution analytically.
If the field configuration is rather unsymmetrical, it is

hard to decide whether a given polarization is conserved. In
this case, the easiest way to estimate a minimum for the
depolarization time TD, is to neglect any symmetry effects
and to take only the total field strength, which is as high as
in plasma accelerators, into account. Before we start, we
simplify the T-BMT equation by normalizing the system
variables to elementary charge e, electron mass me, speed
of light c, momentum mec, energy mec2, spin ℏ=2, time
ω−1
L , lengths k−1L , (laser) field strengthsE0 ¼ mecωL=e, and

(critical) density nc ¼ meω
2
L=ð4πe2Þ. With this normaliza-

tion we refer to a laser with frequency ωL and wavelength
λL which interacts with the polarized particle ensemble.
Then the normalized T-BMT frequency for a particle with
mass m and anomalous magnetic moment a becomes

Ω ¼ q
me

m
½ΩBB −Ωvðv ·BÞv −ΩEv × E�: ð6Þ

To estimate whether a given polarization P is preserved
during the time T, we need to solve Eq. (3) for each
particle. However, for an analytical estimation it is suffi-
cient to know the maximum action angle αmax [see Eq. (2)]
between the initial polarization P0 and the finial spin
vectors si;f ¼ siðTÞ. If the individual spin precessions are
rather incoherent, the initial polarization direction is con-
served but its absolute value would be decreased to
PðTÞ ≥ P0 − sinðαmaxÞ. As soon as αmax is in the order
of π=2, we expect that the N-particle ensemble is com-
pletely depolarized and call the corresponding time the
minimum depolarization time TD.

The anomalous magnetic moment of an electron is
ae ¼ α=ð2πÞ ≈ 10−3, where α is the fine structure constant.
For a proton ap ≈ aemp=me, so that ds=dt is equal for
protons and electrons in the relativistic limit γ ≫ 103 (a
more precise justification is given in the following). In
general, ions with mass mI ≈mp ≫ me have an anomalous
magnetic moment aI ≫ ae so that we can expect that they
behave like protons if their gamma factor is much lager
than one. To determine, how much a given polarization
changes, or for a more precise estimation of TD, we assume
a relativistic ðjvj ≈ cÞ ensemble in which all particles have
nearly the same energy but move in different directions,
so that the single spin precession axes are not aligned.
Since the rotation around the ω-axis can be interpreted
as a superposition of precessions around the B-, v- and
v × E-axis, a substantial approximation of the absolute
value of the precession frequency for this situation is

jΩj ≤ me

m
ðΩBjBj þ ΩvjBj þΩEjEjÞ; ð7Þ

where equality holds if all precession axes were aligned.
To calculate a lower limit for TD, we estimate an upper
limit of jΩj by substituting the dominant field strength
F ¼ maxðE;BÞ for jEj and jBj. Then

jΩj < me

m
½ΩB þΩv þΩE�F; ð8Þ

which depends on the maximum field strength F, the
particle mass m and the ratio of a and γ solely. For
relativistic electrons the Omega terms can be summarized
to ΩB þΩv þΩE ≈ 3ae þ 2=γ, while for electrons with
energy of more than 10 GeV it is γ ≫ 1=ae so that

Ωe ≈ 3aeF: ð9Þ

This implies that the spin evolution in unsymmetrical fields
is independent of the electron energy for sufficiently high
energies.
For relativistic γ ≫ 1 protons with an energy of a few

hundred GeV and above the 2=γ term can be neglected
because of the large anomalous magnetic moment ap > 1

and we immediately find

Ωp;TeV ¼ Ωe;GeV: ð10Þ

In short words one can say that the (near) TeV-proton spin
motion is equivalent to that of a GeV-electron if the fields
do not exhibit a certain symmetry. If the fields were
symmetric, e.g., like those in a circular accelerator, one
would find another relation which would take other effects
like the orbital motion in rings into account [39].
For lower proton energies in the GeV-regime such that γ

is in the range of unity but still jvj ≈ 1
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Ωp;rel ≈Ωe;GeV þ me

mp

�
1

γ
þ 1 − ap

1þ γ

�
F: ð11Þ

For protons ap ≈ 1.8 such that the second term slightly
increases Ωp;rel to

Ωp;GeV ≈ aeF

�
3þ 0.6

ap

�
≈ 3.3aeF: ð12Þ

This limit is only ten percent larger than the previously
found one and converges quite fast. For other ions with
smaller anomalous magnetic moment than ap, the spin
frequency must be calculated from Eq. (8) and can be much
smaller than 3.3aeF. Especially low energetic ions with
negative anomalous magnetic moment the factor 3aþ 2=γ
can be almost zero. For this reason we interpret Eq. (12) as
the only relevant limit for our work and find the electron
and proton minimum depolarization time

TD;p ¼
π

6.6aeF
; ð13Þ

which is independent of the particles’ energy.
Since we are interested in particle acceleration in strong

fields which are in the same order as those in laser-plasma
accelerators, we have to interpret E0 ¼ mecωL=e (which
we used for variable normalization) as a laser field. Then
we can expect that F is in the order of unity if the particle
beam should be separated by the laser itself. The plasma
fields are usually ϵ ¼ ωp=ωL-times smaller than E0 [40].
Thus, for polarization conservation in fields which are as
strong as those in a plasma wakefield, we have to substitute
F≡ ϵ. Substituting F ¼ 1 leads to TD;L ≈ 520ω−1

L both for
relativistic ions and ultrarelativistic electrons. The lower
limit of the depolarization time for electrons and protons in
a wakefield is in the range of TD;W ≈ 520ω−1

L ϵ−1 ≫ TD;L.
In the first case, TD;L is in the range of pico-seconds—a
time span large enough to guaranty polarization conserva-
tion during the interaction with passing ps laser pulses. In
the scope of wakefield acceleration in underdense plasma,
the second time corresponds to an acceleration length in the
mm range.
In Sec. V we compare the analytically derived depo-

larization time in Eq. (13) to the numerically found one
from test-particle simulations of a high energetic nonzero-
emittance electron beam moving in a homogeneous electric
field. By varying the initial momentum spread we observe
that the depolarization times scale as predicted by Eq. (13).
However, Eq. (13) must still be interpreted as a lower limit.
Two important examples of conserved polarization dur-

ing acceleration are TNSA with prepolarized targets
[17,41,42] and wakefield acceleration in prepolarized gases
[21,43]. In the latter case both electrons and protons could
be accelerated without significant change in polarization. In
the following chapters we show why it is sufficient to solve

the T-BMT equation, without considering further quantum
effects like the Stern-Gerlach force or self-polarization due
to spin-flips.

III. STERN-GERLACH

In this chapter, we estimate the spin back-action on the
particle trajectory by approximating the relativistic gener-
alization of the Stern-Gerlach [SG] force for fast (jvj ≈ c)
but uncorrelated moving charged particles with spin 1=2.
We note that our semiclassical approach leads to a

continuous spread of the particle beams, however, in the
following we use the phrase “split” which—we think—is
more appropriate for the Stern-Gerlach effect.
The separation of spin states of any charged particle in a

Stern-Gerlach like setup has already been discussed by N.
Bohr [44]. He deemed that quantum effects would destroy
the separated trajectories in a Stern-Gerlach type of experi-
ment [45]. Later, Garraway and Stenholm found a scheme
of how to practically implement the Stern-Gerlach effect.
They argued that a separation of spin states in momentum
space is sufficient and a spatial splitting in the interaction
region is not necessarily needed. Following their thesis,
this can be realized by using a particle beam of small
diameter in the field region and a propagation time of an
adequate length, which can be realized in laser-plasma
experiments [45–47].
The situation we describe is visualized in the last line

of Fig. 2, where the particles (blue and red dots) move
according to their individual spin vectors (black arrows)
either in positive or negative (z-)direction, if the SG force
acted constantly in z-direction. In this way an initially
(spatial and spin) disordered system state separates into two
independent particle sets with only positive (red dots with
arrow up) or negative (blue dots with arrow down) sz
component allowing for a certain polarization to be built
up. For the case of highly symmetric, quasi-static fields we
solve the equations of motion for test particles numerically
in Sec. V.
To find an expression for the SG force in dependence of

the spin precession we start with the Lagrangian

Ltotal ¼ LEM þ LSG: ð14Þ

Here

LEM ¼ −
mc2

γ
þ q

c
v ·A − qφ ð15Þ

is the Lagrangian describing the motion of the particle in the
external electromagnetic field E ¼ −∇φ − 1=c · ∂A=∂t,
B ¼ ∇ ×A and

LSG ¼ −Ω · s ð16Þ
is the spin interaction Lagrangian [48]. With this ansatz the
canonical momentum becomes
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P ¼ γmv þ q
c
Aþ PSG; ð17Þ

where the Stern-Gerlach part is simply

PSG ¼ ∇vLSG: ð18Þ

From the Lagrange equation of motion we finally find

dðγmvÞ
dt

¼ dpkin

dt
¼ Ftotal ¼ FEM þ FSG ð19Þ

with the Lorentz force

FEM ¼ qEþ q
c
v ×B ð20Þ

and the Stern-Gerlach force

FSG ¼
�
∇ −

d
dt

∇v

�
ðΩ · sÞ: ð21Þ

If we apply the same normalization as in the beginning of
Sec. II including a spin normalization to ℏ=2, this expression
changes to

FSG ¼ ΛSG

�
∇ −

d
dt

∇v

�
ðΩ · sÞ; ð22Þ

where Ω has to be taken from Eq. (6), s ¼ 1 and

ΛSG ¼ ℏωL

2mec2
≈ 1.2 × 10−6λL ½μm�−1 ð23Þ

is the ratio between the energy of a photon with wavelength
λL and the electron rest energy. If we considered the SG force
in fields which are as strong as wakefields ΛSG would be in
the order of 10−7 to 10−8. If the fields were as strong as those
in a laser with a few tens of nmwavelength,ΛSG would be in
the order of 10−4 to 10−5.
For an analytical estimation of how far the SG force

might change the total polarization of a relativistic particle
(electron, proton, etc.) ensemble, we proceed in the same
way we did in the previous section, i.e. we neglect all field
symmetries and take only the dominant field strength F ¼
maxðE;BÞ and the dominant field gradient ∂F ¼
maxi;jðj∂xiFjjÞ into account (for more information see
the Appendix B). Then we estimate an upper limit for
jFSGj and discuss in how far this force could build up a
certain polarization in an initially unpolarized system due
to a separation of particles with opposite spins.
In the nonrelativistic (jvj ≪ 1) limit, the first term of FSG

is the well-known Stern-Gerlach force

FSG ¼ ΛSG
qme

m
ð1þ aÞ∇ðB · sÞ ¼ ∇ðμ · BÞ: ð24Þ

For relativistic particles, the correction in FSG does not
consist of the d=dt∇v-term solely but also includes con-
tributions from Ωv∇ and ΩE∇. They can easily be written
down if we use the vector identities from Appendix B and if
we treat the coordinates r, the canonical momentum P and
the spin s as independent variables. Then the coefficients
ΩB, Ωv and ΩE depend on jvj and the gradient acts on the
fields solely. The relevant terms we need for the gradient
are ∇ðB · sÞ, ∇ðB · vÞ and ∇ðE × vÞ. They cannot be
further simplified but, since the normalized spin has length
one, their norm is limited by 3

ffiffiffi
3

p ∂F (see (B6). Thus, with
the same arguments as in Sec. II, it is clear that for γ ≫ 1
the contribution of spatial gradient to FSG is limited by

F∇ ¼ ΛSG
qme

m

�
3aþ 2

γ

�
3

ffiffiffi
3

p ∂F: ð25Þ

The second term in Eq. (22) contributes due to temporal
(and spatial) field variations (T part), the energy changing
rate (E part) and the change in direction (V part) of the
accelerated particle. With Eq. (3) its kth component can be
written as

d
dt

∂
∂vk ðΩ · sÞ ¼ d

dt
∂Ω
∂vk · s −

∂Ω
∂vk · ðΩ × sÞ; ð26Þ

where

m
qme

d
dt

∂Ω
∂vk ¼ Tk þ Ek þ Vk: ð27Þ

To identify the dominant proportionality of these three
parts, a detailed calculation is given in Appendix A. Here,
we restrict to a comparison of the terms in Eq. (22), which
shows that there are four basic proportionalities we have to
consider in the limit γ ≫ 1. The first one is related to the
spatial gradient [see Eq. (25)]. The second proportionality
is related to the spin-change-rate [see Eq. (A10)] and
contributes with terms

Fs ∝ ΛSG
m2

e

m2
ð2þ 3aγÞF2: ð28Þ

Very similar to this term is

FEV ∝ ΛSG
me

m
F2; ð29Þ

a proportionality we see due to the energy changing rate
and the change in direction. The last part of FSG, we have to
consider, is related to temporal and spatial field variations
again. It scales like

FT ∝ ΛSG
me

m
γ∂F; ð30Þ
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which is γ-times stronger than the gradient part F∇. From
this we immediately see that the SG-T part, which is related
to the ordinary field gradient, is always overcompensated
by the d=dt∇v-part—the field gradient part which must be
considered if the particle moves relativistically.
The prefactors, we did not take into account in the above

proportionalities, are all of the same order. Thus, the ratio of
the field strength, the field gradient and the γ factor
determines which of the terms Eqs. (28) to (30) predomi-
nantly describes the back action of the spin on the
trajectory. If we took all prefactors of jTkj, jEkj, jVkj,
and Eq. (A10) into account, we would see that all forces are
up to one order of magnitude larger if a > 1, i.e., in general,
heavy ions feel an up to ten times stronger force than light
electrons. In the following we identify the dominant term
for electrons and protons and compare it to the electro-
magnetic force F.
For electrons it is me=m ¼ 1 and a ¼ ae ≪ 1, so that

Fs ≫ FEV for both GeVenergies, where 1=a2e ≫ γ ≫ 1=ae,
and TeVenergies, where γ ≫ 1=a2e ≫ 1. As a consequence,
an alternation of the trajectory due to the coupling of the spin
to the acceleration can always be neglected against an
alternation of the trajectory due to the spin-change-rate
caused by the T-BMT rotation. This observation is perfectly
in line with the experience gained at conventional particle
accelerators [13]. If the fields are homogeneous and quasi-
static we can assume ∂F ¼ 0, so that the T-BMT rotation is
the only relevant mechanism. If, however, ∂F ≫ aeF2, it is
the (temporal and spatial) field variation that separates two
electron beams with opposite orientated spins.
For protons we have to consider the mass ratiome=mp ¼

ae=ap ≪ 1 in the proportionalities Eqs. (28) to (30), so that
the above discussion for electrons must be reformulated.
The first difference to the electronic case is visible for rather
moderate 1=ae ≫ γ ≫ 1 relativistic protons with energy
in the lower GeV-regime. These protons see the force
FEV ≫ Fs, which means that here the T-BMT rotation is
overcompensated by the spin-acceleration coupling if
∂F ¼ 0. For ∂F ≫ F2=γ it is the (temporal and/ or spatial)
field variation that dominates all other forces. In the second
(TeV or γ ≫ 1=ae) case the situation changes back to that
known for electrons so that Fs ≫ FEV for ∂F ¼ 0. Similar
to the electronic case, the (temporal and/ or spatial) field
variation is the relevant mechanism if ∂F ≫ aeF2.
Summarizing the electronic and the ionic case in the

high-energy (γ ≫ 1=ae) regime we point out that the
particle trajectories are perturbed rather due to spin
T-BMT rotation than due to the energy- or velocity-
changing rates. Further, both electrons and ions are
sensitive to the field gradients, which means that, even
for small field variations, the FT part of the SG-T force
overcompensates all other effects. In general, for electrons
the Stern-Gerlach force is much smaller than the electro-
magnetic force as long as ΛSGaeγF2 ≪ F or ΛSGγ∂F ≪ F.
For a field strength in the order of F ¼ 1 this means that a

significant perturbation of single-particle trajectories must
be considered as soon as γ ≈ ðΛSG∂FÞ−1 in gradient fields,
which is already achieved for electron energies in the range
of a 100 GeV. For protons, a 2000-times larger kinetic
energy would be necessary to see a trajectory perturbation
due to the Stern-Gerlach force.
Now that we have understood the principle mechanism

in the SG force for high energetic particles, we want to
estimate whether this force can be used to separate (or
filter) an unpolarized relativistic particle beam such that,
after having passed a specific acceleration length in strong
electromagnetic fields, two polarized beams emerge. Since
we are interested in particle acceleration in strong fields
which are in the same order as those in laser-plasma
accelerators, we have to interpret E0 as a laser field.
Then F≡ 1 and ∂F≡ 1=ð2πÞ, if the particle beam should
be separated by the laser itself. The plasma fields are
usually ϵ ¼ ωp=ωL-times smaller than E0. Thus, for polari-
zation in fields which are as strong as those in pure plasma,
we have to substitute F≡ ϵ and ∂F≡ ϵ=RL, where RL ≡
2π=ϵ is the laser focal spot radius (for more information see
also Ref. [40]). Then, if the SG-force acted constantly in
one direction perpendicular to the beam propagation
direction, we could assume that the particles’ energy is
conserved while the unpolarized beam would split up into
two copropagating polarized beams with spatial distance

Δ ¼ me

m
jFSGjT2

accγ
−1: ð31Þ

In principle, the acceleration time Tacc can be quite high,
but since we know from the previous section that the
minimum depolarization time is always much shorter than
typical acceleration times, we can estimate a minimum
separation distance by substituting Tacc ¼ TD ∝ 500 if the
field strength is comparable to that from lasers (F ¼ 1) and
Tacc ∝ 500ϵ−1 if it is comparable to that from wakefields
(F ¼ ϵ). In this way the resulting distance Δ is independent
from the specific field strength F and from the smallness
parameter ϵ.
If we consider particles with energy in the GeV-range in

a tailored plasma channel [35,38], we can assume a certain
field homogeneity (∂F ¼ 0), so that it is the Fs-term that
must be considered as a primary source for SG-force for
electrons and the FEV-term that must be considered for
protons. This in turn leads to a maximum particle separa-
tion distance of

Δeð∂F ¼ 0Þ ∝ 0.3ð2þ 3aγÞλL½μm�−1γ−1 ð32Þ

for electrons and

Δpð∂F ¼ 0Þ ∝ 0.3

�
me

m

�
2

λL½μm�−1γ−1 ð33Þ
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for protons. These distances are in the nm-range for
electrons and in the sub pm-range for protons.
For electrons, an additional field gradient must be

considered if ∂F ≫ aeF2 ∝ aeϵ2. Thus value is much
smaller than the usual plasma field gradient ∂F≡
ϵ2=ð2πÞ so that even small field and density perturbations
almost immediately destroy the idealized ∂F ¼ 0 scenario
for electrons. For protons, an additional field gradient must
be considered if ∂F ≫ F2=γ ∝ ϵ2=γ, so that—again—even
small field and density perturbations almost immediately
destroy the idealized scenario. In all cases it is the FT part
of the SG force which must be considered, so that

Δ ∝ 0.05

�
me

m

�
2

λL½μm�−1 ð34Þ

both for electrons and protons. This distance is in the sub
μm-range for electrons and in the sub pm-range for protons.
Another interesting point regarding the SG force is,

whether all discussed consequences also hold in the limit
γ → 1 such that still jvj ≈ 1. This case would be important
for weakly relativistic protons in laser- and plasma accel-
erators similar to the recently started project JuSPARC,
where polarized proton beams are planned to be created in
laser-induced plasma [17,41,42,49]. To give a short answer
we have a short look at Eqs. (A2) to (A4). Here, for γ ¼ 1,
we have to take all terms into account, so that with

jΩBj ≈ 1þ a jΩEj ≈ aþ 1

2
; jΩvj ≈

a
2
; ð35Þ

jΩ0
Bj ≈ 1j Ω0

Ej ≈
1

4
; jΩ0

vj ≈
a
4
; ð36Þ

jΩ00
Bj ≈ 2j Ω00

Ej ≈
1

4
; jΩ00

vj ≈
a
4

ð37Þ

we can summarize

jTkj ≤ ð7þ 9aÞ∂F; ð38Þ

jEkj ≤
5

4
ð4þ aÞqF2; ð39Þ

jVkj ≤
9

4
ð2þ 5aÞqF2: ð40Þ

For a ≪ 1 and a ≈ 1 these expressions are very close to
those in Eqs. (A8), (A9) and definitely in the same order.
Thus, to discuss the SG force for weakly relativistic
protons, it is sufficient to substitute γ ¼ 1 in the above
found scaling laws.
In summary, we point out that an electron beam has the

best chances to be polarized by the relativistic SG force, if
the acceleration distance is large enough. For protons we do
not see any chance to build up a polarization due to a beam

separation—even if prefactors of jVkj etc., are considered. In
reverse, this means that the SG force can be neglected in
almost all simulations for proton acceleration in lasers and
plasma, but not for electrons. It must carefully be estimated
whether electrons could interact with a too strong field,
where the SG force must be included. If the system passes
this check, the temporal evolution of the quasiclassical
polarization is completely described by the T-BMTequation.
Another related, theoretically studied mechanism is the

polarization of an initially unpolarized electron brunch
using an ultraintense, elliptically polarized laser pulse
(I0 ≈ 1.38 × 1022 Wcm−2) and the resulting splitting into
two oppositely transversely polarized parts due to the spin-
dependent radiation reaction [20].
Originally, the SG force was derived as a quantum

mechanical process, but in this section we considered it
in a quasi-classical limit. Another quantum-mechanical
process, which can lead to self-polarization in storage
rings, is the coupling of the spin to the radiation field of
the accelerated charges and the thereby caused spin flip. In
the next chapter we discuss this effect in a quasiclassical
limit again and show whether it must be considered for
laser-wakefield accelerators or not.

IV. SOKOLOV-TERNOV

In storage rings it is possible to observe spontaneous
self-polarization of accelerated or stored particle bunches.
The mechanism behind it is pure quantum-mechanical and
known as the Sokolov-Ternov effect [14]. It describes a
polarization build-up due to slightly different probabilities
for a spin-flip from down to up P↑ versus spin-flip from up
to down P↓ during emission of radiation (synchrotron
radiation due to the magnetic field induced by the plasma).
In this chapter we calculate the characteristic polarization
time for electrons and protons in laser- and plasma fields.
The situation we described is visualized in the third line of
Fig. 2, where the particles (red dots) move independently
from their individual spin vectors (black arrows) such that
an initially unpolarized system state becomes polarized
after a certain time.
To describe the Sokolov-Ternov process, it is necessary

to introduce a Lagrangian coupling of the emitted radiation
to the spin. The most straightforward approach to do this
is to modify Eq. (14) according to

Ltotal ¼ LEM þ LSG þ LRAD þ LST; ð41Þ

where

LRAD ¼ q
c
v ·Arad − qφrad ð42Þ

describes how the emitted radiation acts back on the
particle trajectories and

LST ¼ −Ωrad · s ð43Þ
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is a direct coupling of spin and radiation via Ωrad ¼
ΩðErad;BradÞ. To quantize the system and to find the
transition probabilities, it is necessary to calculate the
corresponding Hamiltonian. It is [50,51]

Htotal ¼ HEM þHSG þHRAD þHST; ð44Þ

where

HEM ¼ γmc2 þ qφ; HSG ¼ Ω · s; ð45Þ

HRAD ¼ qφrad −
q
c
v ·Arad; HST ¼ Ωrad · s: ð46Þ

Now let jsinii and jsfini be the initial and the final state
of a particle that has emitted a soft photon with energy
ℏω ≪ γmc2. Then we seek to find all matrix elements

Mrad ¼ hsfinjHRADjsinii; MST ¼ hsfinjHSTjsinii: ð47Þ

In general, HST is regarded as the source of spin-flip
radiation. However, since jsinii and jsfini are not necessarily
parallel, also the spin independent term HRAD can couple
both states in Eq. (47), so that both effects must be taken
into consideration. Once the probabilities are known, the
polarization

PðtÞ ¼ Peq½1 − expð−t=τpolÞ�; Peq ¼
P↑ − P↓

P↑ þ P↓
ð48Þ

continuously builds up along the equilibrium-polarization
axis n. The vector n is always associated with a given
orbital trajectory and is defined to be the explicitly time-
independent solution of the T-BMT equation (3) on that
trajectory, so that states quantized along n are stationary
states. In ordinary storage rings, the polarization time

τpol ¼
1

P↑ þ P↓
ð49Þ

is in the range of minutes to hours, whereas in strong
plasma fields, it may be much shorter. The major question
concerning us in this work is whether τpol is small enough
compared to the characteristic time scales and whether Peq

is high enough to achieve a significant polarization.
To estimate the spin-flip probabilities

P↑;↓ ∝
�Z

dω
ℏω

dP↑;↓

dω

�
; ð50Þ

where dP is the differential power spectrum of the emitted
radiation (for more details see [52,53]), we have to
approximate the averaged transition rates

α� ¼ 1

4

Z
R
dτ0h0j½ðω · ηÞtþτ=2ðω · η�Þt−τ=2��j0i: ð51Þ

These rates are connected to the probabilities via

α� ¼ p↑ � p↓ ð52Þ

and allow to reformulate the T-BMT equation as

_sn ¼ ℏ−1α−ðs2 − s2nÞ − αþsn; sn ¼ s · n: ð53Þ

Here, the diffusion term αþsn is of pure quantum origin
and, generally speaking, is a nonlocal function of the
trajectory. An expression for αþ in terms of elementary
functions can be obtained only in several limiting situa-
tions. In the case of practical importance, that of ultra-
relativistic motion, when the change of the acceleration is
relatively small over the length ∝ jγ _vj−1 in which the
radiation is formed, the change of the acceleration is
relatively small, and the integral in αþ is concentrated in
the region jτj ∝ jγ _vj−1 and it can be calculated by using the
expansion [50,54]

rðtþ τÞ ≈ rðtÞ þ vðtÞτ þ _vðtÞ τ
2

2
þ v̈ðtÞ τ

3

6
: ð54Þ

At γ ≫ 1 the radiation, as is well known, is concentrated
in a cone with angle ∝ γ−1 about the velocity. Taking this
circumstance into account and assuming a particle motion
across the field lines in a homogeneous field, it is possible
to show that [50]

α− ≈−
q2ℏγ5j_vj3
m2c8

�
1þ14

3
aþ8a2þ23

3
a3þ10

3
a4þ2

3
a5
�
;

ð55Þ

αþ ≈ −α−
jaj
a

þ RðaÞ; ð56Þ

R ¼ q2ℏγ5j_vj3
e

ffiffiffiffi
12

p
am2c8

��
−1 −

11

12
aþ 17

12
a2 þ 13

24
a3 − a4

� jaj
a

þ 1ffiffiffi
3

p
�
15

8
þ 41

24
a −

115

48
a2 − a3 þ 7

4
a4
��

: ð57Þ

These expressions are exact, if the radiation is quasiclass-
ical. Further, for particle with spin ℏ=2 the polarization
time is Tpol ¼ 1=αþðxÞ and the equilibrium polarization is
Peq ¼ α−=αþ.
If a particle has a small anomalous magnetic moment

a ≪ 1, we may neglect all but the lowest order terms, so
that

T−1
pol ¼ lim

x→0
αþðxÞ ¼

q2ℏγ5j_vj3
m2c8

5
ffiffiffi
3

p

8
ð58Þ
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Peq ¼ lim
x→0

α−ðxÞ
αþðxÞ

¼ −
8

5
ffiffiffi
3

p ¼ −0.92 ð59Þ

independent of γ. If the particle has a rather large
anomalous magnetic moment a ≫ 1, we only take the last
term in α− into account, so that

T−1
pol ¼ T−1

min ¼
q2ℏγ5j_vj3
m2c8

2

3
a5 ð60Þ

Peq ¼ lim
x→∞

α−ðxÞ
αþðxÞ

¼ q0

jq0j ð61Þ

which leads to the smallest polarization time possible. In
addition to these two cases, which describe the polarization
of electron and beams of hypothetical ions with a large
core, there exists another important parameter regime,
where jRðaÞj ≪ jα−ðaÞj. It is the regime of moderate
anomalous magnetic momenta, so that a > 1 is large
enough to suppress R, but not large enough to simplify
the α�-functions. The most prominent representative par-
ticle for this case is the proton with a ≈ 1.8, so that

α−ð1.8Þ ¼ −128 ·
e2ℏγ5j_vj3
m2c8

; ð62Þ

Rð1.8Þ ¼ 0.007 ·
e2ℏγ5j_vj3
m2c8

ð63Þ

and thus

T−1
pol ¼ αþð1.8Þ ≈ 128 ·

e2ℏγ5j_vj3
m2c8

≪ T−1
min: ð64Þ

Besides these trivial examples, it is worth mentioning that
even those particle beams with μ ¼ 0 can be spin-polarized
due to the spin dependence of radiation.
Now, it is convenient to derive a scaling law for Tpol in

dependence of the kinetic energy of electron and proton
bunches and the strength of the field they are moving in. To
find the scaling, we use the same notation as in the previous
section, where F was the maximum field strength in the
system, and substitute

j_vj
c

¼ eF
γmc

ð65Þ

for protons and electrons in Eq. (64) and Eq. (58)
respectively. Then, with e2 ¼ αℏc, ℏc ¼ 0.2 GeV fm and
α ¼ 1=137, we find

Tpol;proton ¼
ðmpc2Þ7

128αðℏcÞ2ðeFÞ3T2
pc

ð66Þ

and

Tpol;proton

Tpol;electron
¼ 5

ffiffiffi
3

p

8 · 128
γ2e
γ2p

m5
p

m5
e
: ð67Þ

This means that the characteristic polarization time of an
initially unpolarized target is 1014 times larger for protons
than for electrons, if both kind of particles have the
same γ factor. If we compare electrons and protons with
equal energy, it is γpmpc2 ¼ γemec2 and thus Tpol;proton≈
1021Tpol;electron.
The final scaling for protons can be deduced from a

simple example, say for high energetic (Tp ¼ 100 GeV)
protons which are moving in a strong (F ¼ 1017 V=m)
field (this field would corresponds to a 1024 W=cm2 laser).
Because then, with eF ¼ 108 GeV=m, γp ¼ Tp=ðmpc2Þ
and mpc2 ¼ 1 GeV, we find

Tpol;proton ≈ 10−5 s; ð68Þ

so that the final scaling law for protons can be formulated as

Tpol;proton ¼
1014 s

Tp½GeV�2F½TV=m�3 : ð69Þ

For electrons we find in the same way or with Eq. (67)

Tpol;electron ¼
10−7 s

Te½GeV�2F½TV=m�3 : ð70Þ

If we substitute known numbers from circular acceler-
ators and storage rings, where F is in the order of
10−4 TV=m, these two scaling laws predict polarization
times in the range of hours for GeV-electrons and more than
a million years for TeV-protons. This is the most important
reason why electron beams can be spin polarized in storage
rings but proton beams cannot. Higher proton energies are
available in these days large machines and easily reach the
10 TeV level. However, as long as the field strength is in
the sub-TeV regime, the corresponding polarization time
remains larger than a million years.
In contrast to circular accelerators and storage rings,

plasmas provide thousand times higher field strengths
so that the minimum polarization time for GeV-electrons
is in the order of microseconds. However, the acceleration
distances are in the order of decimeters, corresponding to
nanosecond particle-field interaction. Hence, the Sokolov-
Ternov effect and thus self-polarization can be neglected in
laser-plasma-accelerators.
As shown earlier, the minimum depolarization time for

proton beams interacting with an ultrahigh intense
(1024 W=cm2) laser pulse is in the order of microseconds
[cmp. Eq. (68)] but for electrons it is clearly in the sub-fs
range. These intensities have been proposed as next-
generation ultraintense lasers and will be available at the
extreme light infrastructure [55]. In some recent works,
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which generalize the Sokolov-Ternov effect and discuss
polarization effects in the framework of the quantum
radiation-reaction regime, it could be shown that electron
beams can obtain a notable polarization if they collide with
an ultraintense laser beam [56,57]. Other models, which do
not include the Sokolov-Ternov effect as described in this
section but other strong-field QED processes like the
strongly nonlinear Compton scattering [58,59] and the
multiphoton Breit-Wheeler process [60], also show that
electron beams can be spin polarized if they interact with
strong fields from laser-generated QED plasmas [61–63].
Similar to the Sokolov-Ternov effect, from which we
calculated the minimum depolarization time, these models
predict polarization times in the fs range and explain that
the basic polarization mechanism is an asymmetry in the
spin-flip transition rate. Note that Kotkin et al. found that
polarization cannot build up from the collation of a single
circularly polarized laser beam with an electron bunch [64].

V. TEST PARTICLE SIMULATIONS

In the last chapters we stated that the polarization of a
particle ensemble is always conserved, if all single particle
spins precess coherently. In this section we investigate a
scenario, where this symmetry is broken and an initial
polarization is lost in a certain time. Our basic idea is to
measure the depolarization time of an exploding electron
cloud radially expanding in a homogeneous electric field.
In this setup all electron spins precess individually due to
different angles between the electron momenta and the field.
Our analytical formulas from Sec. II do not include an angle-
specific spin motion, thus we expect larger depolarization
times in our simulations than predicted by Eq. (13).
To compare our findings from the discussion of the

T-BMT equation and the relativistic SG-force to test-
particle simulations, we solve the T-BMT equation (3)
for the spin and the equations of motion

dr
dt

¼ p
γ
;

dp
dt

¼ FEM þ FSG þ FRR ð71Þ

for the electron position and momentum in known external
fields. The momentum equation is a combination of the
Lorentz force [Eq. (20)], the relativistic Stern-Gerlach force
[Eq. (21)] and a term for the radiation reaction force (RR)
taken from Ref. [65]. In a 3D, nonmanifest covariant form it
can be written as [66]

FRR ¼ −λRRγ
�
dE
dt

þ v ×
dB
dt

�

þ λRR½ðEþ v ×BÞ ×Bþ ðv ·EÞE�
− λRRγ

2½ðEþ v ×BÞ2 − ðv ·EÞ2�v: ð72Þ

Here

λRR ¼ 4π

3

re
λ
¼ 2

3

e2ω
mec3

¼ 4

3
αEMλSG; ð73Þ

re ¼ e2=ðmec2Þ is the classical electron radius and αEM ¼
e2=ðℏcÞ is the fine-structure constant. The radiation reac-
tion force can be treated classically in our simulations
because we choose ΛSG ¼ 1.2 × 10−6. In this situation the
ratio between the electric field and the Schwinger field
Es ¼ m2

ec4=ðℏceÞ is always small enough to ensure that the
χ-parameter

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpμFμνÞ2

q
mecEs

ð74Þ

is smaller than unity [cmp. Fig. 3]. The external electric
field is pointing in positive x-direction and has a normal-
ized constant field amplitude between jEj ¼ 0.1E0 and
jEj ¼ 10E0. In this way the magnetic field in the particles’
rest frame is B ¼ γjvjer × ex, which guarantees the desired
asynchronous spin motion since each spin sees a different
field. Further, we normalize spatial variables to the char-
acteristic wave number k ¼ eE0=ðmec2Þ and the time to the
corresponding frequency ω ¼ kc.
In Sec. II we derived a general expression for the

depolarization time which ignores all field symmetries
and that depends on the maximum field strength of the
field-particle system solely. In this chapter the external
fields are known so that the maximum spin precession
frequency can be calculated more precisely. For example, if
we consider a high energetic (γ ≫ 1=ae), initially copro-
pagating (vjjez) electron, we know the angle between the
field and the velocity vector and can estimate that

FIG. 3. Dependence of the mean χ-factor on the initial
momentum deviation in a simulation series with jEj ¼ E0.
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jΩj ≈ aejv ×Ej ¼ 0; ð75Þ

such that the expectable minimum depolarization time is
arbitrarily large and not comparable to the one in Eq. (13).
In contrast to this scenario, where the influence of the
field symmetry is dominant, a relativistic electron initially
propagating perpendicular to the electric field has
γ ≫ 1=ae but v⊥ez. In this case

jΩj ≈ aejv ×Ej ≈ ae; ð76Þ

which is of the same order as the estimated spin frequency
from Eq. (12)—even if the field symmetry is taken into
account.
In the following we present four simulation series with

20000 initially normal distributed test-electrons with center
of mass μr ¼ ð0; 0; 0Þt, mean momentum μp ¼ ð0; 0; 0Þt,
standard deviation σr ¼ ð1; 1; 1Þt and identical spin s ¼ ex.
In the first simulation series we consider an exploding
electron cloud with momentum deviation σp ¼ σpð1; 1; 1Þt
which expands spherically. In the second series we change
the momentum deviation to σp ¼ σpð0; 1; 1Þt such that all
electrons move initially perpendicular to the electric field.
Both series consider a constant field amplitude of jEj ¼ E0

and a varying momentum deviation between σp ¼ 103 and
σp ¼ 105. The third and fourth simulation series are similar
to the first and second one for a varying field strength
between jEj ¼ 0.1E0 and jEj ¼ 10E0 and a fixed initial
momentum variation of σp ¼ 104. To solve Eqs. (3) and
(71) we adopt the Boris push operator splitting method [67]
in the following way:
1. First half position update:

rnþ1=2 ¼ rn þ pn

2γn
Δt ð77Þ

2. First half momentum acceleration:

p− ¼ pn þ Faccðrnþ1=2;pn; snÞ
2

Δt ð78Þ

3. Momentum rotation step:

pþ ¼ p− þ ðp− þ ðp− × apÞÞ × tp ð79Þ

4. Spin rotation step:

snþ1 ¼ sn þ ðsn þ ðsn × asÞÞ × ts ð80Þ

5. Second half momentum acceleration:

pnþ1 ¼ pþ þ Faccðrnþ1=2;pþ; snþ1Þ
2

Δt ð81Þ

6. Second half position update:

rnþ1 ¼ rnþ1=2 þ pnþ1

2γnþ1
Δt ð82Þ

For the momentum rotation we use the instantaneous
rotation axis

ap ¼
�
Bnþ1=2

γ−
þ λRR

dBnþ1=2

dt

�
Δt
2

ð83Þ

and tp ¼ 2ap=ð1þ japj2Þ, while the spin is rotated with
as ¼ −ΩΔt=2 and ts ¼ 2as=ð1þ jasj2Þ likewise. The vec-
tor Facc is the sum of all those force terms which do not
rotate the momentum vector, i.e.,

Faccðr;p; sÞ ¼
dp
dt

−
2p × ap

Δt
: ð84Þ

An exemplary evolution of the spatial electron distribu-
tion and the spin distribution for σp ¼ 104 and jEj ¼ E0 is
shown in Fig. 4. The first picture in the left column shows
the electron distribution of the radially expanding cloud of
the first simulation series at time t ¼ 1800, which is close
to the actual depolarization time [cmp. Fig. 5(a)]. Due to
the geometry of the system, all possible angles between
single particle velocities and the electric field can be found
which, according to Eqs. (75) and (76), leads to a
distribution of the spin frequencies between Ωmin ¼ 0
and Ωmax ¼ 1=ae. As can be seen in Figs. 4(c) and 4(e),
the distribution is similar to a homogeneous coating
covering the unit sphere including a dense ring-like layer
at its left-hand side. The temporal evolution of the
polarization of this system is shown as black solid line
in Fig. 5(a). The first red dot indicates the polarization at
time t ¼ 500 for the spin distribution in Fig. 4(c) shortly
after the simulation start. The second red dot marks the
polarization at time t ¼ 1800 for the coating in Fig. 4(e),
which is close the actual depolarization time, but more
than three times larger than the predicted one from the
scaling law in Eq. (13) [also cmp. Fig. 5(b)]. A more
precise estimation of the depolarization time would be
TD ≈ 3π=ð6.6aeFÞ, because the vanishing magnetic field
reduces the number of potentially nonzero terms in the
T-BMT equation by a factor of three. However, this time is
still smaller than the observed one because the dense
ringlike electron layer must compensate the homogeneous
coating of slowly varying spins.
A similar observation can be formulated for the second

simulation series for electrons which move initially
perpendicular to the electric field. As seen in the first
picture in right column of Fig. 4, the spatial distribution is a
dense ringlike structure with a thin electron cloud gradually
accelerating in negative x-direction. At the beginning of the
simulation, all spins precess with the same frequency due to
their initially perpendicular velocities. This leads to a spin
distribution resembling a dense ring-like structure without
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FIG. 4. A high energetic (σp ¼ 104) electron cloud (black dots) explodes (red arrows indicate moving direction of single electrons) in
a homogeneous electric field (blue arrows) with field strength jEj ¼ E0, while the single particle spins distribute on the unit sphere (gray
surface). Left column: The electron cloud expands radially (see red arrows) while the spins create a homogeneous covering of the unit
sphere. The simulation time in 4(a) and 4(e) is t ¼ 1800 which corresponds to the depolarization time [cmp. Fig. 5(a)], while 4(c) is the
spin distribution shortly after the simulation start. Right column: The electron cloud expands cylindrically (see red arrows) in a ringlike
structure both in space and in spin space. The simulation time in 4(b) and 4(f) is t ¼ 1400 which again corresponds to the depolarization
time [cmp. Fig. 5(a)], while 4(d) is the spin distribution shortly after the simulation start.

SCALING LAWS FOR THE DEPOLARIZATION … PHYS. REV. ACCEL. BEAMS 23, 064401 (2020)

064401-13



any coating covering the unit sphere in Fig. 4(d). At later
times this structure dissolves since some single spins
precess slightly faster than the major part of the system
[cmp. Fig. 4(f)]. The temporal evolution of the polarization
of this system is shown as black dashed line in Fig. 5(a).
Here, the first blue square indicates the polarization at time
t ¼ 500 for the spin distribution in Fig. 4(d) shortly after
the simulation start. The second blue square marks the
polarization at time t ¼ 1400 for the dissolving ring in

Fig. 4(f), which is close the actual depolarization time. In
contrast to the first simulation, this time is less than TD ≈
3π=ð6.6aeFÞ but still larger than the predicted time from
Eq. (13) [also cmp. Fig. 5(b)]. This emphasizes that TD
from Eq. (13) is the only true lower boundary for the
minimum depolarization time. Simply multiplying TD by a
factor of three (for the reason that one of three terms is
actually nonzero in this example) is not enough to guess
something like a better lower limit.

FIG. 5. 5(a): Temporal evolution of jPj from Eq. (1) of a radially expanding electron cloud (black solid line) and a cylindrically
expanding cloud (black dashed line) for σp ¼ 104 and jEj ¼ E0. The blue (squared) and red (dotted) times correspond to the spin
distributions in Figs. 4(c), 4(d), 4(e), and 4(f). 5(b): Simulated depolarization time [red (dots) and blue (squares)] compared to the scaling
law from Eq. (13) (black solid line) and a more precise estimation (black dashed line) in dependence of the initial momentum deviation.
5(c): Temporal evolution of the mean energy in a radially expanding electron cloud (black solid line) and a cylindrically expanding cloud
(black dashed line) for σp ¼ 104. The blue (squared) and red (dotted) times correspond to the spin distributions in Figs. 4(c), 4(d), 4(e),
and 4(f). 5(d): Simulated depolarization time [red (dots) and blue (squares)] compared to the scaling law from Eq. (13) (black solid line)
and the more precise estimation (black dashed line) in dependence of the maximum field strength F for a constant initial momentum
deviation of σp ¼ 104.
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If we vary the initial momentum standard deviation in the
first simulation series, we observe a similar polarization
evolution as in Fig. 5(a) for σp > 5 × 103. For smaller
standard deviations, the estimation TD ≈ 3π=ð6.6aeFÞ is
too high because the condition hγi ≪ 1=ae for Eq. (13) is
no longer fulfilled [cmp. red dots in Fig. 5(b)]. In contrast to
that, the observed depolarization times in second simula-
tion series [see blue squares in Fig. 5(b)] are always less
than 3π=ð6.6aeFÞ. However, the scaling law minTD ¼
π=ð6.6aeFÞ is valid for all simulations in both series. If the
initial mean electron energy is high enough, both systems
are depolarized before the gamma factor becomes small
due to radiation effects. If the gamma factor is rather low
but still high enough to meet the condition hγi ≪ 1=ae at
the beginning of the simulation, the energy loss due to
radiation is limited [see Fig. 5(c)] and the condition is met
till depolarization.
If we fix the momentum deviation to σp ¼ 104, so that

the condition hγi ≪ 1=ae for Eq. (13) is fulfilled [cmp. red
dots in Fig. 5(b)], and vary the field strength between F ¼
0.1E0 and F ¼ 10E0, we see that the predicted scaling
TD ∝ 1=F is both met for a spherically exploding electron
cloud in the third simulation series [red dots in Fig. 5(d)]
and radially exploding cloud in the fourth series [blue
squares in Fig. 5(d)]. By comparing both results with the
predicted minimum depolarization time (black solid line)
and the more precise estimation TD ≈ 3π=ð6.6aeFÞ (black
dashed line) we see that the above discussed observations
for Fig. 5(b) hold for all F.

VI. CONCLUSION

In this work we derive scaling laws for the (de-)polari-
zation time of high energetic particle beamsmoving in strong
fields. We discuss all relevant mechanisms, namely an
asynchronous spin precession, the Sokolov-Ternov effect
and the Stern-Gerlach force, that may have an influence on
the polarization. We consider field strengths which are
comparable to those known from present days laser and
plasma accelerators for light electrons and comparatively
heavy protons. In our derivations we use rather general
approximations of the field gradient and the field strength
so that our results are independent from a specific field
configuration and the specific particle moving direction.
Our scaling law for the minimum depolarization time for

initially polarized electron and proton beams is calculated
from the T-BMT equation under the assumption that all
particle spins precess incoherently. A comparison to test-
particle simulations of high energetic electrons moving in a
homogeneous electric field shows that the observed depo-
larization time scales as predicted. In any case, the scaling
law must always be interpreted as a lower limit.
A discussion of the generalized Stern-Gerlach force

shows that the single-particle trajectories are perturbed
rather by a T-BMT-rotation-induced spin change than due
to a coupling of the spin to the energy- or velocity-changing

rates, while even small field variations must be taken into
account. Regarding a possible polarization build up
through spin-depending beam split up effects, we see that
a TeV electron beam has the best chances to be polarized
when the plasma is dense enough and the acceleration
distance (time) is large enough. For protons we do not see
any chance to build up a polarization by a beam separation.
After having discussed the Sokolov-Ternov effect in the

framework of a Hamiltonian theory, we formulate scaling
laws for the minimum polarization time for electrons and
protons in arbitrary fields. Applied to conventional accel-
erators we recover known polarization times, while our
scalings predict that electrons moving in strong
(≈1017 V=m) fields should be polarized in less than a fs.
Theoretical models incorporating strong-field QED effects
agree with our findings.
In the last chapter of our work we present a couple of

test-particle simulations to investigate a scenario, where an
initial polarization of a relativistic electron beam is lost in a
certain time. In our simulations an electron cloud expands
in a homogeneous electric field such that incoherent spin
oscillations can be guaranteed. As mentioned above, the
observed depolarization time scales as predicted by the
scaling law we derived from the T-BMT equation.
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APPENDIX A: EXPLICIT CALCULATION
OF Tk, Ek, AND Vk

In Sec. III the contributions of the spin-change rate Fs,
the energy-changing rate FEV and the temporal and spatial
field variations FT to the Stern-Gerlach force [cf. Eq. (22)]
are estimated. In this Appendix, expressions for the
temporal (and spatial) part Tk, the engery part Ek and
the velocity part Vk are derived. Before we calculate these
three parts in detail, it is important to mention that we are
interested in an upper limit for the norm of the second
derivative in Eq. (22) solely. In turn, this limit predomi-
nantly depends on the leading term, so that it is sufficient to
identify the dominant terms and consider noting but their
proportionality. Since all derivations are symmetric in k, it
is convenient to calculate the T, E, and V terms for one
(arbitrary) k only Since E and B depend on r and t solely
and since ΩB, Ωv, and ΩE are functions with sole argument
γ, the first order derivation in Eq. (24) reduces to

SCALING LAWS FOR THE DEPOLARIZATION … PHYS. REV. ACCEL. BEAMS 23, 064401 (2020)

064401-15



m
qme

∂Ω
∂vk ¼ ½Ω0

BB −Ω0
vðv · BÞv − Ω0

Ev ×E�γ3vk
−ΩvBkv − Ωvðv ·BÞêk −ΩEêk ×E ðA1Þ

where we have used the abbreviation Ω0
α ¼ dΩα=dγ for

α ¼ B, v, E and ∂γ=∂vk ¼ γ3vk. Since we are interested in
relativistically moving particles, we assume jvj ≈ 1 and
γ ≫ 1. Then—after a separation of the total time derivation
into the spatial part ∂X ¼ ∂=∂tþ v · ∇ and the velocity-
energy part _v · ∇v ¼ _γ∂γ ¼ qðv · EÞ∂γ [see Appendix (B11)
to (B17)]—the second order derivation in Eq. (26) can be
split up into the temporal (and spatial) part

Tk ¼ ½Ω0
B∂XB−Ω0

vðv ·∂XBÞv−Ω0
Ev×∂XE�γ3vk

− ½Ωv∂XBkvþΩvðv ·∂XBÞêkþΩEêk ×∂XE�; ðA2Þ

the energy part

Ek¼ ½Ω00
BB−Ω00

vðv ·BÞv−Ω00
Ev×E�γ3vkqðv ·EÞ

þ ½Ω0
BB−Ω0

vðv ·BÞv−Ω0
Ev×E�2γ2vkqðv ·EÞ

− ½Ω0
vBkvþΩ0

vðv ·BÞêkþΩ0
Eêk ×E�qðv ·EÞ; ðA3Þ

and the velocity (change in direction) part

Vk ¼ ½−Ω0
vð_v ·BÞv −Ω0

vðv ·BÞ_v −Ω0
E _v × E�γ3vk

þ ½Ω0
BB −Ω0

vðv ·BÞv −Ω0
Ev ×E�γ3 _vk

−ΩvBk _v − Ωvð_v ·BÞêk: ðA4Þ

To estimate, whether a bunch of charged particles with spin
ℏ=2 can be separated by the SG-T force, it is necessary to find
the dominant terms in Eq. (22). To do that, we first compare
the norm of each term in Tk, Ek, and Vk. For simplicity we
substitute F ¼ maxðjEj; jBjÞ, j∂XBj ¼ j∂XEj ¼ 4∂F and
jsj ¼ 1. Then the spin frequency components scale like

jΩBj ≈ jΩEj ≈ aþ 1

γ
; jΩvj ≈ a; ðA5Þ

jΩ0
Bj ≈ jΩ0

Ej ≈
1

γ2
; jΩ0

vj ≈
a
γ2

; ðA6Þ

jΩ00
Bj ≈ jΩ00

Ej ≈
2

γ3
; jΩ00

vj ≈
2a
γ3

ðA7Þ

such that the leading terms in Eqs. (A2) and (A3) are

jTkj ≤ 4ð2þ aÞγ∂F; jEkj ≤ 4ð2þ aÞqF2: ðA8Þ

To find the dominant terms in Eq. (A4) we also substitute
j_vj ¼ 3qF=γ from Eq. (B17) and find

jVkj ≤ 9ð1þ aÞqF2: ðA9Þ

If we apply Eq. (8) and the same approximation as above to
Eq. (A1)we further see that the spin-change-rate is limited by

				 ∂Ω∂vk · ðΩ × sÞ
				 ≤ m2

e

m2
ð2þ aÞð2þ 3aγÞF2: ðA10Þ

APPENDIX B: VECTOR IDENTITIES THAT
APPEAR DURING THE DERIVATION OF THE

STERN-GERLACH FORCE AND THE
SOKOLOV-TERNOV EFFECT

In Sec. III and Awe derived the relativistic generalization
of the Stern-Gerlach force. In this Appendix we summarize
all needed vector identities.
Let a and b be two arbitrary nonzero vectors, which do

not depend on x and v. Then

∇v½ðv · aÞðv · bÞ� ¼ aðv · bÞ þ ðv · aÞb ðB1Þ

and

∇v½ðv × aÞ · b� ¼ a × b: ðB2Þ

Let γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jvj2

p
be the Lorentz factor. Then v is the

velocity, p ¼ γv is the kinetic momentum and

∇v
1

γ
¼ −p; ∇vγ ¼ −γ2∇v

1

γ
¼ γ2p: ðB3Þ

Further, it is

∇v
1

1þ γ
¼ −

γ2

ð1þ γÞ2 p ðB4Þ

and

∇v
γ

1þ γ
¼ γ2

ð1þ γÞ2 p: ðB5Þ

Let FðrÞ be a vector-valued function and a, b two arbitrary
nonzero vectors. Then

j∇ðF · aÞj ≤ jaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ð∂xi jFjÞ2
vuut

≤ jaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

�X3
j¼1

jFjj
jFj j∂xiFjj

�2
vuut

≤ 3
ffiffiffi
3

p
jaj∂F; ðB6Þ

where

∂F ¼ max
i;j¼1;2;3

ðj∂xiFjjÞ: ðB7Þ
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The generalization of Eq. (B2) for an arbitrary vector-
valued function can be formulated as

∇½ðF × aÞ · b� ¼
X3
i¼1

�∂F
∂xi · ða × bÞ

�
êxi ; ðB8Þ

so that Eq. (B7) gives

j∇½ðF × aÞ · b�j ≤
X3
i¼1

ð
ffiffiffi
3

p ∂FjajjbjÞ2êxi ðB9Þ

¼ 3jajjbj∂F: ðB10Þ

Some important formulas for the description of the
Sokolov-Ternov effect are summarized here:

d
dt

¼ ∂
∂tþ v ·∇þ _v · ∇v ðB11Þ

_v ·∇v ¼
X3
i¼1

_vi
∂γ
∂vi

∂
∂γ ¼ _γ

∂
∂γ ðB12Þ

_γ ¼ p · _p
γ

¼ qv · E ðB13Þ

_v ¼ _p
γ
−

p
γ2

_γ ¼ q
γ
½Eþ v ×B − ðv · EÞv� ðB14Þ

For derivation of Vk we need the following identities

j_v ·Bj ≤ q
γ
ð1þ jvj2ÞjEjjBj < q

γ
2F2 ðB15Þ

j_v ×Ej ≤ q
γ
½jvjjEjjBj þ jvj2jEj2� < q

γ
2F2 ðB16Þ

j_vj ≤ q
γ
½jEj þ jvjjBj þ jvj2jEj� < q

γ
3F ðB17Þ
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