000888236 001__ 888236
000888236 005__ 20210130010847.0
000888236 0247_ $$2doi$$a10.1111/nph.16442
000888236 0247_ $$2ISSN$$a0028-646X
000888236 0247_ $$2ISSN$$a1469-8137
000888236 0247_ $$2Handle$$a2128/26525
000888236 0247_ $$2altmetric$$aaltmetric:74597397
000888236 0247_ $$2pmid$$a31958150
000888236 0247_ $$2WOS$$aWOS:000517614900001
000888236 037__ $$aFZJ-2020-04785
000888236 082__ $$a580
000888236 1001_ $$00000-0002-3992-9920$$aMeixner, Marco$$b0
000888236 245__ $$aA small‐scale MRI scanner and complementary imaging method to visualize and quantify xylem embolism formation
000888236 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2020
000888236 3367_ $$2DRIVER$$aarticle
000888236 3367_ $$2DataCite$$aOutput Types/Journal article
000888236 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607954378_17288
000888236 3367_ $$2BibTeX$$aARTICLE
000888236 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888236 3367_ $$00$$2EndNote$$aJournal Article
000888236 520__ $$aMagnetic resonance imaging (MRI) is a useful tool to image xylem embolism formation in plants. MRI scanners configured to accept intact plants are rare and expensive. Here, we investigate if affordable small-scale, custom-built low-field MRI scanners would suffice for the purpose. * A small-scale, C-shaped permanent magnet was paired with open, plane parallel imaging gradients. The setup was small enough to fit between leaves or branches and offered open access for plant stems of arbitrary length. To counter the two main drawbacks of the system, low signal to noise and reduced magnetic field homogeneity, a multi-spin echo (MSE) pulse sequence was implemented, allowing efficient signal acquisition and quantitative imaging of water content and T2 signal relaxation. * The system was tested visualizing embolism formation in Fagus sylvatica during bench dehydration. High-quality images of water content and T2 were readily obtained, which could be utilized to detect the cavitation of vessels smaller than could be spatially resolved. A multiplication of both map types yielded images in which filled xylem appeared with even greater contrast. * T2 imaging with small-scale MRI devices allows straightforward visualization of the spatial and temporal dynamics of embolism formation and the derivation of vulnerability curves.
000888236 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000888236 588__ $$aDataset connected to CrossRef
000888236 7001_ $$00000-0002-1470-1030$$aTomasella, Martina$$b1
000888236 7001_ $$00000-0002-6381-1543$$aFoerst, Petra$$b2
000888236 7001_ $$0P:(DE-Juel1)129422$$aWindt, Carel W.$$b3$$eCorresponding author
000888236 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/nph.16442$$gVol. 226, no. 5, p. 1517 - 1529$$n5$$p1517 - 1529$$tThe new phytologist$$v226$$x1469-8137$$y2020
000888236 8564_ $$uhttps://juser.fz-juelich.de/record/888236/files/New%20Phytologist%20Methods%20Meixner%20et%20al.pdf$$yOpenAccess
000888236 909CO $$ooai:juser.fz-juelich.de:888236$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888236 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-3992-9920$$aForschungszentrum Jülich$$b0$$kFZJ
000888236 9101_ $$0I:(DE-588b)36241-4$$60000-0002-3992-9920$$aTechnische Universität München$$b0$$kTUM
000888236 9101_ $$0I:(DE-588b)36241-4$$60000-0002-1470-1030$$aTechnische Universität München$$b1$$kTUM
000888236 9101_ $$0I:(DE-588b)36241-4$$60000-0002-6381-1543$$aTechnische Universität München$$b2$$kTUM
000888236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich$$b3$$kFZJ
000888236 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000888236 9141_ $$y2020
000888236 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW PHYTOL : 2018$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEW PHYTOL : 2018$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-27$$wger
000888236 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888236 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-27
000888236 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-08-27$$wger
000888236 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-27
000888236 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888236 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-27
000888236 920__ $$lyes
000888236 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000888236 980__ $$ajournal
000888236 980__ $$aVDB
000888236 980__ $$aUNRESTRICTED
000888236 980__ $$aI:(DE-Juel1)IBG-2-20101118
000888236 9801_ $$aFullTexts