Home > Publications database > A small‐scale MRI scanner and complementary imaging method to visualize and quantify xylem embolism formation > print |
001 | 888236 | ||
005 | 20210130010847.0 | ||
024 | 7 | _ | |a 10.1111/nph.16442 |2 doi |
024 | 7 | _ | |a 0028-646X |2 ISSN |
024 | 7 | _ | |a 1469-8137 |2 ISSN |
024 | 7 | _ | |a 2128/26525 |2 Handle |
024 | 7 | _ | |a altmetric:74597397 |2 altmetric |
024 | 7 | _ | |a 31958150 |2 pmid |
024 | 7 | _ | |a WOS:000517614900001 |2 WOS |
037 | _ | _ | |a FZJ-2020-04785 |
082 | _ | _ | |a 580 |
100 | 1 | _ | |a Meixner, Marco |0 0000-0002-3992-9920 |b 0 |
245 | _ | _ | |a A small‐scale MRI scanner and complementary imaging method to visualize and quantify xylem embolism formation |
260 | _ | _ | |a Oxford [u.a.] |c 2020 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607954378_17288 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Magnetic resonance imaging (MRI) is a useful tool to image xylem embolism formation in plants. MRI scanners configured to accept intact plants are rare and expensive. Here, we investigate if affordable small-scale, custom-built low-field MRI scanners would suffice for the purpose. * A small-scale, C-shaped permanent magnet was paired with open, plane parallel imaging gradients. The setup was small enough to fit between leaves or branches and offered open access for plant stems of arbitrary length. To counter the two main drawbacks of the system, low signal to noise and reduced magnetic field homogeneity, a multi-spin echo (MSE) pulse sequence was implemented, allowing efficient signal acquisition and quantitative imaging of water content and T2 signal relaxation. * The system was tested visualizing embolism formation in Fagus sylvatica during bench dehydration. High-quality images of water content and T2 were readily obtained, which could be utilized to detect the cavitation of vessels smaller than could be spatially resolved. A multiplication of both map types yielded images in which filled xylem appeared with even greater contrast. * T2 imaging with small-scale MRI devices allows straightforward visualization of the spatial and temporal dynamics of embolism formation and the derivation of vulnerability curves. |
536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Tomasella, Martina |0 0000-0002-1470-1030 |b 1 |
700 | 1 | _ | |a Foerst, Petra |0 0000-0002-6381-1543 |b 2 |
700 | 1 | _ | |a Windt, Carel W. |0 P:(DE-Juel1)129422 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1111/nph.16442 |g Vol. 226, no. 5, p. 1517 - 1529 |0 PERI:(DE-600)1472194-6 |n 5 |p 1517 - 1529 |t The new phytologist |v 226 |y 2020 |x 1469-8137 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/888236/files/New%20Phytologist%20Methods%20Meixner%20et%20al.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:888236 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 0000-0002-3992-9920 |
910 | 1 | _ | |a Technische Universität München |0 I:(DE-588b)36241-4 |k TUM |b 0 |6 0000-0002-3992-9920 |
910 | 1 | _ | |a Technische Universität München |0 I:(DE-588b)36241-4 |k TUM |b 1 |6 0000-0002-1470-1030 |
910 | 1 | _ | |a Technische Universität München |0 I:(DE-588b)36241-4 |k TUM |b 2 |6 0000-0002-6381-1543 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129422 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEW PHYTOL : 2018 |d 2020-08-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEW PHYTOL : 2018 |d 2020-08-27 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-08-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2020-08-27 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-08-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|