000888241 001__ 888241 000888241 005__ 20210130010848.0 000888241 0247_ $$2doi$$a10.22323/1.363.0048 000888241 0247_ $$2Handle$$a2128/26299 000888241 037__ $$aFZJ-2020-04790 000888241 1001_ $$0P:(DE-HGF)0$$aAmmer, Maximilian$$b0 000888241 1112_ $$a37th International Symposium on Lattice Field Theory$$cWuhan$$d2019-06-16 - 2019-06-22$$wChina 000888241 245__ $$aDetails of a staggered fermion data analysis 000888241 260__ $$aTrieste, Italy$$bSissa Medialab$$c2020 000888241 29510 $$aProceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019) - Sissa Medialab Trieste, Italy, 2020. - ISBN - doi:10.22323/1.363.0048 000888241 300__ $$a048 000888241 3367_ $$2ORCID$$aCONFERENCE_PAPER 000888241 3367_ $$033$$2EndNote$$aConference Paper 000888241 3367_ $$2BibTeX$$aINPROCEEDINGS 000888241 3367_ $$2DRIVER$$aconferenceObject 000888241 3367_ $$2DataCite$$aOutput Types/Conference Paper 000888241 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1606457386_10102 000888241 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 000888241 520__ $$aWe present technical details of an analysis of pseudo-scalar data from a QCD simulation with staggered fermions. The data were obtained close to the physical point with an inverse lattice spacing of about 3 GeV, and N_f =2+1+1. We compare different methods of extracting effective masses and decay constants in lattice units. The results of several correlated and uncorrelated fitting methods are compared, both on the simulated data set, and on a synthetically generated data set. 000888241 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000888241 588__ $$aDataset connected to CrossRef Conference 000888241 7001_ $$0P:(DE-Juel1)132580$$aDurr, Stephan$$b1$$eCorresponding author 000888241 773__ $$a10.22323/1.363.0048 000888241 8564_ $$uhttps://pos.sissa.it/363/048/pdf 000888241 8564_ $$uhttps://juser.fz-juelich.de/record/888241/files/LATTICE2019_048.pdf$$yOpenAccess 000888241 909CO $$ooai:juser.fz-juelich.de:888241$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888241 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132580$$aForschungszentrum Jülich$$b1$$kFZJ 000888241 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000888241 9141_ $$y2020 000888241 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000888241 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000888241 920__ $$lyes 000888241 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000888241 980__ $$acontrib 000888241 980__ $$aVDB 000888241 980__ $$aUNRESTRICTED 000888241 980__ $$acontb 000888241 980__ $$aI:(DE-Juel1)JSC-20090406 000888241 9801_ $$aFullTexts