000888242 001__ 888242
000888242 005__ 20210208142409.0
000888242 0247_ $$2doi$$a10.1039/D0SC04051G
000888242 0247_ $$2ISSN$$a2041-6520
000888242 0247_ $$2ISSN$$a2041-6539
000888242 0247_ $$2Handle$$a2128/26801
000888242 0247_ $$2altmetric$$aaltmetric:92721278
000888242 0247_ $$2WOS$$aWOS:000582936200022
000888242 037__ $$aFZJ-2020-04791
000888242 082__ $$a540
000888242 1001_ $$0P:(DE-HGF)0$$aAgerschou, Emil Dandanell$$b0
000888242 245__ $$aInhibitor and substrate cooperate to inhibit amyloid fibril elongation of α-synuclein
000888242 260__ $$aCambridge$$bRSC$$c2020
000888242 3367_ $$2DRIVER$$aarticle
000888242 3367_ $$2DataCite$$aOutput Types/Journal article
000888242 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610978820_9652
000888242 3367_ $$2BibTeX$$aARTICLE
000888242 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888242 3367_ $$00$$2EndNote$$aJournal Article
000888242 520__ $$aIn amyloid fibril elongation, soluble growth substrate binds to the fibril-end and converts into the fibril conformation. This process is targeted by inhibitors that block fibril-ends. Here, we investigated how the elongation of α-synuclein (αS) fibrils, which are associated with Parkinson's disease and other synucleinopathies, is inhibited by αS variants with a preformed hairpin in the critical N-terminal region comprising residues 36–57. The inhibitory efficiency is strongly dependent on the specific position of the hairpin. We find that the inhibitor and substrate concentration dependencies can be analyzed with models of competitive enzyme inhibition. Remarkably, the growth substrate, i.e., wild-type αS, supports inhibition by stabilizing the elongation-incompetent blocked state. This observation allowed us to create inhibitor–substrate fusions that achieved inhibition at low nanomolar concentration. We conclude that inhibitor–substrate cooperativity can be exploited for the design of fibril growth inhibitors.
000888242 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000888242 536__ $$0G:(EU-Grant)726368$$aBETACONTROL - Control of amyloid formation via beta-hairpin molecular recognition features (726368)$$c726368$$fERC-2016-COG$$x1
000888242 588__ $$aDataset connected to CrossRef
000888242 7001_ $$0P:(DE-HGF)0$$aBorgmann, Vera$$b1
000888242 7001_ $$00000-0002-1591-0168$$aWördehoff, Michael M.$$b2
000888242 7001_ $$0P:(DE-Juel1)166306$$aHoyer, Wolfgang$$b3$$eCorresponding author
000888242 773__ $$0PERI:(DE-600)2559110-1$$a10.1039/D0SC04051G$$gVol. 11, no. 41, p. 11331 - 11337$$n41$$p11331 - 11337$$tChemical science$$v11$$x2041-6539$$y2020
000888242 8564_ $$uhttps://juser.fz-juelich.de/record/888242/files/Agerschou%202020%20Chem%20Sci%2C%20Inhibitor%20and%20substrate%20cooperate.pdf$$yOpenAccess
000888242 909CO $$ooai:juser.fz-juelich.de:888242$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000888242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166306$$aForschungszentrum Jülich$$b3$$kFZJ
000888242 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000888242 9141_ $$y2020
000888242 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000888242 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM SCI : 2018$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM SCI : 2018$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888242 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-10$$wger
000888242 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-10
000888242 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-10
000888242 920__ $$lyes
000888242 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000888242 980__ $$ajournal
000888242 980__ $$aVDB
000888242 980__ $$aUNRESTRICTED
000888242 980__ $$aI:(DE-Juel1)IBI-7-20200312
000888242 9801_ $$aFullTexts