000888273 001__ 888273
000888273 005__ 20210130010851.0
000888273 0247_ $$2doi$$a10.3389/fmicb.2020.607182
000888273 0247_ $$2Handle$$a2128/26318
000888273 0247_ $$2altmetric$$aaltmetric:95170117
000888273 0247_ $$2pmid$$a33329499
000888273 0247_ $$2WOS$$aWOS:000597304700001
000888273 037__ $$aFZJ-2020-04800
000888273 082__ $$a570
000888273 1001_ $$0P:(DE-HGF)0$$aOberleitner, Linda$$b0
000888273 245__ $$aThe Puzzle of Metabolite Exchange and Identification of Putative Octotrico Peptide Repeat Expression Regulators in the Nascent Photosynthetic Organelles of Paulinella chromatophora
000888273 260__ $$aLausanne$$bFrontiers Media$$c2020
000888273 3367_ $$2DRIVER$$aarticle
000888273 3367_ $$2DataCite$$aOutput Types/Journal article
000888273 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606747794_12377
000888273 3367_ $$2BibTeX$$aARTICLE
000888273 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888273 3367_ $$00$$2EndNote$$aJournal Article
000888273 520__ $$aThe endosymbiotic acquisition of mitochondria and plastids more than one billion years ago was central for the evolution of eukaryotic life. However, owing to their ancient origin, these organelles provide only limited insights into the initial stages of organellogenesis. The cercozoan amoeba Paulinella chromatophora contains photosynthetic organelles—termed chromatophores—that evolved from a cyanobacterium ∼100 million years ago, independently from plastids in plants and algae. Despite the more recent origin of the chromatophore, it shows tight integration into the host cell. It imports hundreds of nucleus-encoded proteins, and diverse metabolites are continuously exchanged across the two chromatophore envelope membranes. However, the limited set of chromatophore-encoded solute transporters appears insufficient for supporting metabolic connectivity or protein import. Furthermore, chromatophore-localized biosynthetic pathways as well as multiprotein complexes include proteins of dual genetic origin, suggesting that mechanisms evolved that coordinate gene expression levels between chromatophore and nucleus. These findings imply that similar to the situation in mitochondria and plastids, also in P. chromatophora nuclear factors evolved that control metabolite exchange and gene expression in the chromatophore. Here we show by mass spectrometric analyses of enriched insoluble protein fractions that, unexpectedly, nucleus-encoded transporters are not inserted into the chromatophore inner envelope membrane. Thus, despite the apparent maintenance of its barrier function, canonical metabolite transporters are missing in this membrane. Instead we identified several expanded groups of short chromatophore-targeted orphan proteins. Members of one of these groups are characterized by a single transmembrane helix, and others contain amphipathic helices. We hypothesize that these proteins are involved in modulating membrane permeability. Thus, the mechanism generating metabolic connectivity of the chromatophore fundamentally differs from the one for mitochondria and plastids, but likely rather resembles the poorly understood mechanism in various bacterial endosymbionts in plants and insects. Furthermore, our mass spectrometric analysis revealed an expanded family of chromatophore-targeted helical repeat proteins. These proteins show similar domain architectures as known organelle-targeted expression regulators of the octotrico peptide repeat type in algae and plants. Apparently these chromatophore-targeted proteins evolved convergently to plastid-targeted expression regulators and are likely involved in gene expression control in the chromatophore.
000888273 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000888273 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x1
000888273 588__ $$aDataset connected to CrossRef
000888273 7001_ $$0P:(DE-HGF)0$$aPoschmann, Gereon$$b1
000888273 7001_ $$0P:(DE-HGF)0$$aMacorano, Luis$$b2
000888273 7001_ $$0P:(DE-HGF)0$$aSchott-Verdugo, Stephan$$b3
000888273 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b4$$ufzj
000888273 7001_ $$0P:(DE-HGF)0$$aStühler, Kai$$b5
000888273 7001_ $$0P:(DE-HGF)0$$aNowack, Eva C. M.$$b6$$eCorresponding author
000888273 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2020.607182$$gVol. 11, p. 607182$$p607182$$tFrontiers in microbiology$$v11$$x1664-302X$$y2020
000888273 8564_ $$uhttps://juser.fz-juelich.de/record/888273/files/fmicb-11-607182.pdf$$yOpenAccess
000888273 909CO $$ooai:juser.fz-juelich.de:888273$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888273 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b4$$kFZJ
000888273 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000888273 9141_ $$y2020
000888273 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-32
000888273 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888273 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2018$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888273 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-32
000888273 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000888273 920__ $$lyes
000888273 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000888273 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000888273 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000888273 980__ $$ajournal
000888273 980__ $$aVDB
000888273 980__ $$aUNRESTRICTED
000888273 980__ $$aI:(DE-Juel1)IBI-7-20200312
000888273 980__ $$aI:(DE-Juel1)JSC-20090406
000888273 980__ $$aI:(DE-Juel1)NIC-20090406
000888273 9801_ $$aFullTexts