001     888276
005     20220930130258.0
024 7 _ |a 10.3390/agronomy10111813
|2 doi
024 7 _ |a 2128/26547
|2 Handle
024 7 _ |a WOS:000592966600001
|2 WOS
037 _ _ |a FZJ-2020-04802
082 _ _ |a 640
100 1 _ |a Tewes, Andreas
|0 P:(DE-Juel1)180165
|b 0
|e Corresponding author
245 _ _ |a Assimilation of Sentinel-2 Estimated LAI into a Crop Model: Influence of Timing and Frequency of Acquisitions on Simulation of Water Stress and Biomass Production of Winter Wheat
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607973766_18530
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Sentinel-2 (S2) Toolbox permits for the automated retrieval of leaf area index (LAI). LAI assimilation into crop simulation models could aid to improve the prediction accuracy for biomass at field level. We investigated if the combined effects of assimilation date and corresponding growth stage plus observational frequency have an impact on the crop model-based simulation of water stress and biomass production. We simulated winter wheat growth in nine fields in Germany over two years. S2 LAI estimations for each field were categorized into three phases, depending on the development stage of the crop at acquisition date (tillering, stem elongation, booting to flowering). LAI was assimilated in every possible combinational setup using the ensemble Kalman filter (EnKF). We evaluated the performance of the simulations based on the comparison of measured and simulated aboveground biomass at harvest. The results showed that the effects on water stress remained largely limited, because it mostly occurred after we stopped LAI assimilation. With regard to aboveground biomass, we found that the assimilation of only one LAI estimate from either the tillering or the booting to flowering stage resulted in simulated biomass values similar or closer to measured values than in those where more than one LAI estimate from the stem elongation phase were assimilated. LAI assimilation after the tillering phase might therefore be not necessarily required, as it may not lead to the desired improvement effect
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 1
700 1 _ |a Nolte, Manuel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Krauss, Gunther
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hoffmann, Holger
|0 0000-0001-9811-5065
|b 4
700 1 _ |a Gaiser, Thomas
|0 0000-0002-5820-2364
|b 5
773 _ _ |a 10.3390/agronomy10111813
|g Vol. 10, no. 11, p. 1813 -
|0 PERI:(DE-600)2607043-1
|n 11
|p 1813 -
|t Agronomy
|v 10
|y 2020
|x 2073-4395
856 4 _ |u https://juser.fz-juelich.de/record/888276/files/Invoice_MDPI_agronomy-915661_1260.08EUR.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/888276/files/agronomy-10-01813.pdf
909 C O |o oai:juser.fz-juelich.de:888276
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129506
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-32
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AGRONOMY-BASEL : 2018
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-32
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-32
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21