000888277 001__ 888277
000888277 005__ 20230217124531.0
000888277 0247_ $$2doi$$a10.1111/ene.14443
000888277 0247_ $$2ISSN$$a1351-5101
000888277 0247_ $$2ISSN$$a1468-1331
000888277 0247_ $$2ISSN$$a1471-0552
000888277 0247_ $$2Handle$$a2128/26317
000888277 0247_ $$2altmetric$$aaltmetric:85984555
000888277 0247_ $$2pmid$$apmid:32677282
000888277 0247_ $$2WOS$$aWOS:000563880000001
000888277 037__ $$aFZJ-2020-04803
000888277 041__ $$aEnglish
000888277 082__ $$a610
000888277 1001_ $$00000-0002-9980-4978$$aGramespacher, H.$$b0$$eCorresponding author
000888277 245__ $$aAberrant frontostriatal connectivity in Alzheimer's disease with positive palmomental reflex
000888277 260__ $$aOxford$$bBlackwell Science91133$$c2020
000888277 264_1 $$2Crossref$$3online$$bWiley$$c2020-08-20
000888277 264_1 $$2Crossref$$3print$$bWiley$$c2020-12-01
000888277 264_1 $$2Crossref$$3print$$bWiley$$c2020-12-01
000888277 3367_ $$2DRIVER$$aarticle
000888277 3367_ $$2DataCite$$aOutput Types/Journal article
000888277 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606735387_12377
000888277 3367_ $$2BibTeX$$aARTICLE
000888277 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888277 3367_ $$00$$2EndNote$$aJournal Article
000888277 520__ $$aBackground and purposePrimitive reflexes may reoccur in various neurodegenerative diseases. However, little is known about their structural and functional correlates in the human brain. Notably, the neural mechanisms underlying a positive palmomental reflex (PMR) are poorly understood. As recent studies link Alzheimer's disease (AD)‐related primitive reflexes to a dysfunction of the corticostriatal motor circuit (CMC), we conducted the present study to investigate functional and structural correlates of a positive PMR. We hypothesized an involvement of frontostriatal structures and an impairment of the CMC.MethodsUsing whole‐brain resting‐state functional connectivity (FC), hypothesis and FC result‐based probabilistic tractography, and voxel‐based morphometry analyses, we compared two groups of AD patients with either positive (n = 12) or negative PMR (n = 12).ResultsNo significant differences in grey matter volume or structural connectivity (SC) could be observed between the PMR‐positive and PMR‐negative groups. In contrast, the PMR‐positive group showed a decreased seed‐to‐voxel FC between the bilateral supplementary motor area and parts of the right‐hemispherical caudate nucleus and thalamus and a decreased region of interest (ROI)‐to‐ROI FC between the left putamen and the left superior frontal gyrus.ConclusionData suggest that dysfunction of the CMC reflected by decreased FC underlies a positive PMR in patients with AD. The lack of significant grey matter or SC differences might reflect that changes in FC appear before changes in SC in the structures of the CMC and brain atrophy.
000888277 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000888277 542__ $$2Crossref$$i2020-08-20$$uhttp://creativecommons.org/licenses/by-nc/4.0/
000888277 542__ $$2Crossref$$i2020-08-20$$uhttp://doi.wiley.com/10.1002/tdm_license_1.1
000888277 588__ $$aDataset connected to CrossRef
000888277 7001_ $$0P:(DE-Juel1)167565$$aRichter, Nils$$b1$$ufzj
000888277 7001_ $$0P:(DE-HGF)0$$aEdwin Thanarajah, S.$$b2
000888277 7001_ $$0P:(DE-HGF)0$$aJacobs, H. I. L.$$b3
000888277 7001_ $$0P:(DE-HGF)0$$aDillen, K. N. H.$$b4
000888277 7001_ $$0P:(DE-HGF)0$$aNellessen, N.$$b5
000888277 7001_ $$0P:(DE-Juel1)156372$$aReutern, B.$$b6
000888277 7001_ $$0P:(DE-Juel1)162382$$aDronse, J.$$b7
000888277 7001_ $$0P:(DE-Juel1)131730$$aKukolja, J.$$b8
000888277 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b9
000888277 7001_ $$0P:(DE-Juel1)131736$$aOnur, O. A.$$b10
000888277 77318 $$2Crossref$$3journal-article$$a10.1111/ene.14443$$bWiley$$d2020-08-20$$n12$$p2405-2414$$tEuropean Journal of Neurology$$v27$$x1351-5101$$y2020
000888277 773__ $$0PERI:(DE-600)2020241-6$$a10.1111/ene.14443$$gVol. 27, no. 12, p. 2405 - 2414$$n12$$p2405-2414$$tEuropean journal of neurology$$v27$$x1351-5101$$y2020
000888277 8564_ $$uhttps://juser.fz-juelich.de/record/888277/files/Gramespacher_2020_EurJNeurol_Aberrant%20frontostriatal%20connectivity%20in%20Alzheimers%20disease%20withpositive%20palmomental%20re%EF%AC%82ex.pdf$$yOpenAccess
000888277 909CO $$ooai:juser.fz-juelich.de:888277$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000888277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167565$$aForschungszentrum Jülich$$b1$$kFZJ
000888277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000888277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b9$$kFZJ
000888277 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131736$$aForschungszentrum Jülich$$b10$$kFZJ
000888277 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000888277 9141_ $$y2020
000888277 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000888277 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000888277 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000888277 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NEUROL : 2015
000888277 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000888277 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000888277 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000888277 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000888277 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888277 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000888277 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000888277 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000888277 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000888277 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000888277 920__ $$lyes
000888277 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000888277 980__ $$ajournal
000888277 980__ $$aVDB
000888277 980__ $$aUNRESTRICTED
000888277 980__ $$aI:(DE-Juel1)INM-3-20090406
000888277 9801_ $$aFullTexts
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jalz.2007.08.005
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-510X(05)81138-4
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1186/s12877-015-0094-0
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0929-6646(08)60016-9
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5694/j.1326-5377.1987.tb120156.x
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jns.2015.11.003
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp.73.2.113
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1001/archneur.1961.00450110016003
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp.74.5.558
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02260904
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/ene.12726
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-12-407815-4.00002-7
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neurobiolaging.2016.04.010
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jalz.2011.03.008
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000002923
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1373/clinchem.2009.130518
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3233/JAD-161120
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1089/brain.2012.0073
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuroimage.2006.01.021
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuroimage.2008.10.055
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jneumeth.2016.03.001
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/hbm.10062
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/nimg.2002.1132
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S1053-8119(03)00169-1
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/nimg.2001.0978
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuroimage.2015.10.019
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.24204
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.10609
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00429-016-1223-z
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuroimage.2007.07.007
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/med/9780199688395.001.0001
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.11-03-00667.1991
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.11-11-03656.1991
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neubiorev.2013.11.002
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp.46.2.162
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1097/00005053-195807000-00012
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0090-3019(86)90274-0
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fnagi.2017.00144
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.4103/1673-5374.265566
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41583-018-0068-2
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fnsys.2014.00016
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11910-005-0059-3
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1097/WAD.0b013e318299d3d6
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nicl.2018.06.016
000888277 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fnins.2014.00405