001     888277
005     20230217124531.0
024 7 _ |a 10.1111/ene.14443
|2 doi
024 7 _ |a 1351-5101
|2 ISSN
024 7 _ |a 1468-1331
|2 ISSN
024 7 _ |a 1471-0552
|2 ISSN
024 7 _ |a 2128/26317
|2 Handle
024 7 _ |a altmetric:85984555
|2 altmetric
024 7 _ |a pmid:32677282
|2 pmid
024 7 _ |a WOS:000563880000001
|2 WOS
037 _ _ |a FZJ-2020-04803
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Gramespacher, H.
|0 0000-0002-9980-4978
|b 0
|e Corresponding author
245 _ _ |a Aberrant frontostriatal connectivity in Alzheimer's disease with positive palmomental reflex
260 _ _ |a Oxford
|c 2020
|b Blackwell Science91133
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2020-08-20
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2020-12-01
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2020-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606735387_12377
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background and purposePrimitive reflexes may reoccur in various neurodegenerative diseases. However, little is known about their structural and functional correlates in the human brain. Notably, the neural mechanisms underlying a positive palmomental reflex (PMR) are poorly understood. As recent studies link Alzheimer's disease (AD)‐related primitive reflexes to a dysfunction of the corticostriatal motor circuit (CMC), we conducted the present study to investigate functional and structural correlates of a positive PMR. We hypothesized an involvement of frontostriatal structures and an impairment of the CMC.MethodsUsing whole‐brain resting‐state functional connectivity (FC), hypothesis and FC result‐based probabilistic tractography, and voxel‐based morphometry analyses, we compared two groups of AD patients with either positive (n = 12) or negative PMR (n = 12).ResultsNo significant differences in grey matter volume or structural connectivity (SC) could be observed between the PMR‐positive and PMR‐negative groups. In contrast, the PMR‐positive group showed a decreased seed‐to‐voxel FC between the bilateral supplementary motor area and parts of the right‐hemispherical caudate nucleus and thalamus and a decreased region of interest (ROI)‐to‐ROI FC between the left putamen and the left superior frontal gyrus.ConclusionData suggest that dysfunction of the CMC reflected by decreased FC underlies a positive PMR in patients with AD. The lack of significant grey matter or SC differences might reflect that changes in FC appear before changes in SC in the structures of the CMC and brain atrophy.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
542 _ _ |i 2020-08-20
|2 Crossref
|u http://creativecommons.org/licenses/by-nc/4.0/
542 _ _ |i 2020-08-20
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Richter, Nils
|0 P:(DE-Juel1)167565
|b 1
|u fzj
700 1 _ |a Edwin Thanarajah, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jacobs, H. I. L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dillen, K. N. H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nellessen, N.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Reutern, B.
|0 P:(DE-Juel1)156372
|b 6
700 1 _ |a Dronse, J.
|0 P:(DE-Juel1)162382
|b 7
700 1 _ |a Kukolja, J.
|0 P:(DE-Juel1)131730
|b 8
700 1 _ |a Fink, G. R.
|0 P:(DE-Juel1)131720
|b 9
700 1 _ |a Onur, O. A.
|0 P:(DE-Juel1)131736
|b 10
773 1 8 |a 10.1111/ene.14443
|b Wiley
|d 2020-08-20
|n 12
|p 2405-2414
|3 journal-article
|2 Crossref
|t European Journal of Neurology
|v 27
|y 2020
|x 1351-5101
773 _ _ |a 10.1111/ene.14443
|g Vol. 27, no. 12, p. 2405 - 2414
|0 PERI:(DE-600)2020241-6
|n 12
|p 2405-2414
|t European journal of neurology
|v 27
|y 2020
|x 1351-5101
856 4 _ |u https://juser.fz-juelich.de/record/888277/files/Gramespacher_2020_EurJNeurol_Aberrant%20frontostriatal%20connectivity%20in%20Alzheimers%20disease%20withpositive%20palmomental%20re%EF%AC%82ex.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888277
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167565
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131736
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J NEUROL : 2015
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts
999 C 5 |a 10.1016/j.jalz.2007.08.005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0022-510X(05)81138-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1186/s12877-015-0094-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0929-6646(08)60016-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.5694/j.1326-5377.1987.tb120156.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jns.2015.11.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1136/jnnp.73.2.113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1001/archneur.1961.00450110016003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1136/jnnp.74.5.558
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF02260904
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/ene.12726
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/B978-0-12-407815-4.00002-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neurobiolaging.2016.04.010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jalz.2011.03.008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1212/WNL.0000000000002923
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1373/clinchem.2009.130518
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3233/JAD-161120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1089/brain.2012.0073
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuroimage.2006.01.021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuroimage.2008.10.055
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jneumeth.2016.03.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/hbm.10062
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1006/nimg.2002.1132
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S1053-8119(03)00169-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1006/nimg.2001.0978
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuroimage.2015.10.019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/mrm.24204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/mrm.10609
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00429-016-1223-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuroimage.2007.07.007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/med/9780199688395.001.0001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.11-03-00667.1991
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.11-11-03656.1991
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neubiorev.2013.11.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1136/jnnp.46.2.162
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1097/00005053-195807000-00012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0090-3019(86)90274-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fnagi.2017.00144
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4103/1673-5374.265566
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41583-018-0068-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fnsys.2014.00016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s11910-005-0059-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1097/WAD.0b013e318299d3d6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.nicl.2018.06.016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fnins.2014.00405
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21