000888282 001__ 888282
000888282 005__ 20220930130258.0
000888282 0247_ $$2doi$$a10.1002/cssc.202002383
000888282 0247_ $$2ISSN$$a1864-5631
000888282 0247_ $$2ISSN$$a1864-564X
000888282 0247_ $$2Handle$$a2128/27155
000888282 0247_ $$2altmetric$$aaltmetric:95827905
000888282 0247_ $$2pmid$$a33244874
000888282 0247_ $$2WOS$$aWOS:000596881900001
000888282 037__ $$aFZJ-2020-04808
000888282 041__ $$aEnglish
000888282 082__ $$a540
000888282 1001_ $$0P:(DE-Juel1)180726$$aWeidener, Dennis$$b0$$eFirst author
000888282 245__ $$aLignocellulose fractionation using recyclable phosphoric acid: Lignin, cellulose and furfural production.
000888282 260__ $$aWeinheim$$bWiley-VCH$$c2021
000888282 3367_ $$2DRIVER$$aarticle
000888282 3367_ $$2DataCite$$aOutput Types/Journal article
000888282 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645777944_831
000888282 3367_ $$2BibTeX$$aARTICLE
000888282 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888282 3367_ $$00$$2EndNote$$aJournal Article
000888282 520__ $$aThe conversion of lignocellulose into its building blocks and their further transformation into valuable platform chemicals (e.g. furfural) are key technologies to move towards the use of renewable resources. This paper explores the disentanglement of lignocellulose into hemicellulose‐derived sugars, cellulose and lignin in a biphasic solvent system (water/2‑methyltetrahydrofuran) using phosphoric acid as recyclable catalyst. Integrated with the biomass fractionation, in a second step hemicellulose‐derived sugars – mainly xylose – are converted to furfural, which is in situ extracted into 2‑methyltetrahydrofuran with high selectivity (70 %) and yield (56 wt%). To further increase the economic feasibility of the process, a downstream and recycling strategy enables recovery of phosphoric acid without loss of process efficiency over four consecutive cycles. This outlines a more efficient and sustainable use of phosphoric acid as catalyst, as its inherent costs can be significantly lowered.
000888282 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000888282 588__ $$aDataset connected to CrossRef
000888282 7001_ $$0P:(DE-HGF)0$$aLeitner, Walter$$b1
000888282 7001_ $$0P:(DE-HGF)0$$aDomínguez de María, Pablo$$b2
000888282 7001_ $$0P:(DE-Juel1)173960$$aKlose, Holger$$b3
000888282 7001_ $$0P:(DE-Juel1)171913$$aGrande, Philipp$$b4$$eCorresponding author
000888282 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202002383$$gp. cssc.202002383$$n3$$p909-916$$tChemSusChem$$v14$$x1864-564X$$y2021
000888282 8564_ $$uhttps://juser.fz-juelich.de/record/888282/files/cssc.202002383.pdf$$yOpenAccess
000888282 8767_ $$d2020-11-30$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000888282 909CO $$ooai:juser.fz-juelich.de:888282$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000888282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180726$$aForschungszentrum Jülich$$b0$$kFZJ
000888282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173960$$aForschungszentrum Jülich$$b3$$kFZJ
000888282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171913$$aForschungszentrum Jülich$$b4$$kFZJ
000888282 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000888282 9130_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000888282 9141_ $$y2021
000888282 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000888282 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000888282 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888282 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2018$$d2020-09-03
000888282 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2018$$d2020-09-03
000888282 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-03$$wger
000888282 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000888282 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000888282 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888282 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000888282 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000888282 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000888282 920__ $$lyes
000888282 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000888282 980__ $$ajournal
000888282 980__ $$aVDB
000888282 980__ $$aI:(DE-Juel1)IBG-2-20101118
000888282 980__ $$aAPC
000888282 980__ $$aUNRESTRICTED
000888282 9801_ $$aAPC
000888282 9801_ $$aFullTexts