000888291 001__ 888291
000888291 005__ 20230310131348.0
000888291 0247_ $$2doi$$a10.1002/aelm.202000815
000888291 0247_ $$2Handle$$a2128/26988
000888291 0247_ $$2WOS$$aWOS:000594730200001
000888291 037__ $$aFZJ-2020-04817
000888291 082__ $$a621.3
000888291 1001_ $$0P:(DE-Juel1)174486$$aSiegel, Sebastian$$b0$$eCorresponding author
000888291 245__ $$aTrade‐Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices
000888291 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co. KG$$c2021
000888291 3367_ $$2DRIVER$$aarticle
000888291 3367_ $$2DataCite$$aOutput Types/Journal article
000888291 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643899565_27542
000888291 3367_ $$2BibTeX$$aARTICLE
000888291 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000888291 3367_ $$00$$2EndNote$$aJournal Article
000888291 520__ $$aMemristive switching devices are promising for future data storage and neuromorphic computing applications to overcome the scaling and power dissipation limits of classical CMOS technology. Many groups have engineered bilayer oxide structures to enhance the switching performance especially in terms of retention and device reliability. Here, introducing retention enhancement oxide layers into the memristive stack is shown to result in a reduction of the switching speed not only by changing the voltage and temperature distribution in the cell, but also by influencing the rate‐limiting‐step of the switching kinetics. In particular, it is demonstrated that by introducing a retention enhancement layer into resistive switching SrTiO3 devices, the kinetics are no longer determined by the interface exchange reaction between switching oxide and active electrode, but depend on the oxygen ion migration in the additional interface layer. Thus, the oxygen migration barrier in the additional layer determines the switching speed. This trade‐off between retention and switching speed is of general importance for rational engineering of memristive devices.
000888291 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000888291 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x1
000888291 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x2
000888291 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x3
000888291 588__ $$aDataset connected to CrossRef
000888291 7001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b1
000888291 7001_ $$0P:(DE-Juel1)173699$$aGutsche, Alexander$$b2
000888291 7001_ $$00000-0002-1350-7092$$aWitzleben, Moritz$$b3
000888291 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4
000888291 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b5
000888291 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b6
000888291 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.202000815$$gp. 2000815 -$$n1$$p2000815$$tAdvanced electronic materials$$v7$$x2199-160X$$y2021
000888291 8564_ $$uhttps://juser.fz-juelich.de/record/888291/files/aelm.202000815.pdf$$yOpenAccess
000888291 8767_ $$d2020-11-30$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000888291 909CO $$ooai:juser.fz-juelich.de:888291$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000888291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174486$$aForschungszentrum Jülich$$b0$$kFZJ
000888291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b1$$kFZJ
000888291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173699$$aForschungszentrum Jülich$$b2$$kFZJ
000888291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000888291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b5$$kFZJ
000888291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b6$$kFZJ
000888291 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000888291 9141_ $$y2021
000888291 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000888291 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000888291 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000888291 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2018$$d2020-08-22
000888291 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ELECTRON MATER : 2018$$d2020-08-22
000888291 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-22$$wger
000888291 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000888291 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000888291 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000888291 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-22
000888291 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000888291 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000888291 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000888291 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000888291 980__ $$ajournal
000888291 980__ $$aVDB
000888291 980__ $$aI:(DE-Juel1)PGI-7-20110106
000888291 980__ $$aI:(DE-Juel1)PGI-10-20170113
000888291 980__ $$aAPC
000888291 980__ $$aUNRESTRICTED
000888291 9801_ $$aAPC
000888291 9801_ $$aFullTexts