001     888291
005     20230310131348.0
024 7 _ |a 10.1002/aelm.202000815
|2 doi
024 7 _ |a 2128/26988
|2 Handle
024 7 _ |a WOS:000594730200001
|2 WOS
037 _ _ |a FZJ-2020-04817
082 _ _ |a 621.3
100 1 _ |a Siegel, Sebastian
|0 P:(DE-Juel1)174486
|b 0
|e Corresponding author
245 _ _ |a Trade‐Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643899565_27542
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Memristive switching devices are promising for future data storage and neuromorphic computing applications to overcome the scaling and power dissipation limits of classical CMOS technology. Many groups have engineered bilayer oxide structures to enhance the switching performance especially in terms of retention and device reliability. Here, introducing retention enhancement oxide layers into the memristive stack is shown to result in a reduction of the switching speed not only by changing the voltage and temperature distribution in the cell, but also by influencing the rate‐limiting‐step of the switching kinetics. In particular, it is demonstrated that by introducing a retention enhancement layer into resistive switching SrTiO3 devices, the kinetics are no longer determined by the interface exchange reaction between switching oxide and active electrode, but depend on the oxygen ion migration in the additional interface layer. Thus, the oxygen migration barrier in the additional layer determines the switching speed. This trade‐off between retention and switching speed is of general importance for rational engineering of memristive devices.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|x 0
|f POF IV
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|x 1
|f Advanced Computing Architectures
536 _ _ |a Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)
|0 G:(BMBF)16ES1133K
|c 16ES1133K
|x 2
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Baeumer, Christoph
|0 P:(DE-Juel1)159254
|b 1
700 1 _ |a Gutsche, Alexander
|0 P:(DE-Juel1)173699
|b 2
700 1 _ |a Witzleben, Moritz
|0 0000-0002-1350-7092
|b 3
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 4
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 5
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 6
773 _ _ |a 10.1002/aelm.202000815
|g p. 2000815 -
|0 PERI:(DE-600)2810904-1
|n 1
|p 2000815
|t Advanced electronic materials
|v 7
|y 2021
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/888291/files/aelm.202000815.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:888291
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2018
|d 2020-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2018
|d 2020-08-22
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-22
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-22
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21