000888292 001__ 888292 000888292 005__ 20240711085648.0 000888292 0247_ $$2doi$$a10.1002/nano.202000079 000888292 0247_ $$2Handle$$a2128/26989 000888292 0247_ $$2WOS$$aWOS:001176483000017 000888292 037__ $$aFZJ-2020-04818 000888292 082__ $$a500 000888292 1001_ $$0P:(DE-Juel1)174436$$aWolff, Michael$$b0$$eCorresponding author$$ufzj 000888292 245__ $$aA microwave‐based one‐pot process for homogeneous surface coating: improved electrochemical performance of Li(Ni1/3Mn1/3Co1/3)O2 with a nano‐scaled ZnO:Al layer 000888292 260__ $$aWeinheim, Germany$$bWiley-VCH$$c2021 000888292 3367_ $$2DRIVER$$aarticle 000888292 3367_ $$2DataCite$$aOutput Types/Journal article 000888292 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634813702_15487 000888292 3367_ $$2BibTeX$$aARTICLE 000888292 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000888292 3367_ $$00$$2EndNote$$aJournal Article 000888292 520__ $$aIn this article, a versatile process based on microwave-assisted sol-gel synthesis is introduced in order to apply a surface coating on cathode material for lithium-ion batteries. Here, a nano-scaled ZnO:Al (AZO) layer is coated homogeneously onto Li(Ni1/3Mn1/3Co1/3)O2 (NMC111) powder at temperatures below 210 °C within a few minutes. In contrast to other wet-chemical coating techniques, the method described here is conducted in a one-pot reaction and does not require a post-annealing step at elevated temperatures. Investigations via high resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM) and inductively-coupled plasma optical emission spectroscopy (ICP-OES) promote a thorough understanding of coating microstructure and quality in dependence of reaction temperature, duration and precursor concentration. The AZO protective coating on NMC111 significantly reduce capacity fading during cycling in the voltage range of 3.0 – 4.5 V. Furthermore, applying optimal quantities of the coating agent on NMC111 lead to enhanced specific capacities compared to the uncoated material. 000888292 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000888292 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1 000888292 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x2 000888292 588__ $$aDataset connected to CrossRef 000888292 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b1$$ufzj 000888292 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b2$$ufzj 000888292 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b3$$ufzj 000888292 7001_ $$0P:(DE-HGF)0$$aRibeiro, Caue$$b4 000888292 7001_ $$0P:(DE-HGF)0$$aGuichard, Xavier H.$$b5 000888292 7001_ $$0P:(DE-HGF)0$$aNiederberger, Markus$$b6 000888292 7001_ $$0P:(DE-HGF)0$$aMakvandi, Ardavan$$b7 000888292 7001_ $$0P:(DE-HGF)0$$aPeterlechner, Martin$$b8 000888292 7001_ $$0P:(DE-HGF)0$$aWilde, Gerhard$$b9 000888292 7001_ $$0P:(DE-HGF)0$$aFattakhova‐Rohlfing, Dina$$b10 000888292 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b11$$ufzj 000888292 773__ $$0PERI:(DE-600)3042763-0$$a10.1002/nano.202000079$$n1$$p146-157$$tNano select$$v2$$x2688-4011$$y2021 000888292 8564_ $$uhttps://juser.fz-juelich.de/record/888292/files/nano.202000079-1.pdf$$yOpenAccess 000888292 909CO $$ooai:juser.fz-juelich.de:888292$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000888292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174436$$aForschungszentrum Jülich$$b0$$kFZJ 000888292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b1$$kFZJ 000888292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b2$$kFZJ 000888292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b3$$kFZJ 000888292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b11$$kFZJ 000888292 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000888292 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 000888292 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1 000888292 9141_ $$y2021 000888292 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000888292 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000888292 920__ $$lyes 000888292 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000888292 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1 000888292 9801_ $$aFullTexts 000888292 980__ $$ajournal 000888292 980__ $$aVDB 000888292 980__ $$aI:(DE-Juel1)IEK-1-20101013 000888292 980__ $$aI:(DE-82)080011_20140620 000888292 980__ $$aUNRESTRICTED 000888292 981__ $$aI:(DE-Juel1)IMD-2-20101013